ترغب بنشر مسار تعليمي؟ اضغط هنا

Twelve Years of Galaxy Zoo

79   0   0.0 ( 0 )
 نشر من قبل Karen Masters
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Galaxy Zoo (GZ) project has provided quantitative visual morphologies for over a million galaxies, and has been part of a reinvigoration of interest in the morphologies of galaxies and what they reveal about galaxy evolution. Morphological information collected by GZ has shown itself to be a powerful tool for studying galaxy evolution, and GZ continues to collect classifications - currently serving imaging from DECaLS in its main site, and running a variety of related projects hosted by the Zooniverse; the citizen science platform which came out of the early success of GZ. I highlight some of the results from the last twelve years, with a particular emphasis on linking morphology and dynamics, look forward to future projects in the GZ family, and provide a quick start guide for how you can easily make use of citizen science techniques to analysis your own large and complex data sets.


قيم البحث

اقرأ أيضاً

We discuss the origin of the optical variations in the Narrow line Seyfert 1 galaxy NGC 4051 and present the results of a cross-correlation study using X-ray and optical light curves spanning more than 12 years. The emission is highly variable in all wavebands, and the amplitude of the optical variations is found to be smaller than that of the X-rays, even after correcting for the contaminating host galaxy flux falling inside the photometric aperture. The optical power spectrum is best described by an unbroken power law model with slope $alpha=1.4^{+0.6}_{-0.2}$ and displays lower variability power than the 2-10 keV X-rays on all time-scales probed. We find the light curves to be significantly correlated at an optical delay of $1.2^{+1.0}_{-0.3}$ days behind the X-rays. This time-scale is consistent with the light travel time to the optical emitting region of the accretion disc, suggesting that the optical variations are driven by X-ray reprocessing. We show, however, that a model whereby the optical variations arise from reprocessing by a flat accretion disc cannot account for all the optical variability. There is also a second significant peak in the cross-correlation function, at an optical delay of $39^{+2.7}_{-8.4}$ days. The lag is consistent with the dust sublimation radius in this source, suggesting that there is a measurable amount of optical flux coming from the dust torus. We discuss the origin of the additional optical flux in terms of reprocessing of X-rays and reflection of optical light by the dust.
Background SAMtools and BCFtools are widely used programs for processing and analysing high-throughput sequencing data. Findings The first version appeared online twelve years ago and has been maintained and further developed ever since, with m any new features and improvements added over the years. The SAMtools and BCFtools packages represent a unique collection of tools that have been used in numerous other software projects and countless genomic pipelines. Conclusion Both SAMtools and BCFtools are freely available on GitHub under the permissive MIT licence, free for both non-commercial and commercial use. Both packages have been installed over a million times via Bioconda. The source code and documentation are available from http://www.htslib.org.
Spiral structure is ubiquitous in the Universe, and the pitch angle of arms in spiral galaxies provide an important observable in efforts to discriminate between different mechanisms of spiral arm formation and evolution. In this paper, we present a hierarchical Bayesian approach to galaxy pitch angle determination, using spiral arm data obtained through the Galaxy Builder citizen science project. We present a new approach to deal with the large variations in pitch angle between different arms in a single galaxy, which obtains full posterior distributions on parameters. We make use of our pitch angles to examine previously reported links between bulge and bar strength and pitch angle, finding no correlation in our data (with a caveat that we use observational proxies for both bulge size and bar strength which differ from other work). We test a recent model for spiral arm winding, which predicts uniformity of the cotangent of pitch angle between some unknown upper and lower limits, finding our observations are consistent with this model of transient and recurrent spiral pitch angle as long as the pitch angle at which most winding spirals dissipate or disappear is larger than 10 degrees.
Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S$^4$G spiral galaxies in terms of their relative halo, bulge and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored or cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at $z lesssim 0.1$ and $mathrm{M_*} gtrsim 10^{10} mathrm{M_odot}$ have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms.
This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surv eys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise SN detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with > 8{sigma} detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events, and via the training and improvement of existing machine classifier algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا