ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapper Based Classifier

111   0   0.0 ( 0 )
 نشر من قبل Alex Georges
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological data analysis aims to extract topological quantities from data, which tend to focus on the broader global structure of the data rather than local information. The Mapper method, specifically, generalizes clustering methods to identify significant global mathematical structures, which are out of reach of many other approaches. We propose a classifier based on applying the Mapper algorithm to data projected onto a latent space. We obtain the latent space by using PCA or autoencoders. Notably, a classifier based on the Mapper method is immune to any gradient based attack, and improves robustness over traditional CNNs (convolutional neural networks). We report theoretical justification and some numerical experiments that confirm our claims.



قيم البحث

اقرأ أيضاً

We propose to reinterpret a standard discriminative classifier of p(y|x) as an energy based model for the joint distribution p(x,y). In this setting, the standard class probabilities can be easily computed as well as unnormalized values of p(x) and p (x|y). Within this framework, standard discriminative architectures may beused and the model can also be trained on unlabeled data. We demonstrate that energy based training of the joint distribution improves calibration, robustness, andout-of-distribution detection while also enabling our models to generate samplesrivaling the quality of recent GAN approaches. We improve upon recently proposed techniques for scaling up the training of energy based models and presentan approach which adds little overhead compared to standard classification training. Our approach is the first to achieve performance rivaling the state-of-the-artin both generative and discriminative learning within one hybrid model.
Adversarial attacks on convolutional neural networks (CNN) have gained significant attention and there have been active research efforts on defense mechanisms. Stochastic input transformation methods have been proposed, where the idea is to recover t he image from adversarial attack by random transformation, and to take the majority vote as consensus among the random samples. However, the transformation improves the accuracy on adversarial images at the expense of the accuracy on clean images. While it is intuitive that the accuracy on clean images would deteriorate, the exact mechanism in which how this occurs is unclear. In this paper, we study the distribution of softmax induced by stochastic transformations. We observe that with random transformations on the clean images, although the mass of the softmax distribution could shift to the wrong class, the resulting distribution of softmax could be used to correct the prediction. Furthermore, on the adversarial counterparts, with the image transformation, the resulting shapes of the distribution of softmax are similar to the distributions from the clean images. With these observations, we propose a method to improve existing transformation-based defenses. We train a separate lightweight distribution classifier to recognize distinct features in the distributions of softmax outputs of transformed images. Our empirical studies show that our distribution classifier, by training on distributions obtained from clean images only, outperforms majority voting for both clean and adversarial images. Our method is generic and can be integrated with existing transformation-based defenses.
Mutual information is widely applied to learn latent representations of observations, whilst its implication in classification neural networks remain to be better explained. We show that optimising the parameters of classification neural networks wit h softmax cross-entropy is equivalent to maximising the mutual information between inputs and labels under the balanced data assumption. Through experiments on synthetic and real datasets, we show that softmax cross-entropy can estimate mutual information approximately. When applied to image classification, this relation helps approximate the point-wise mutual information between an input image and a label without modifying the network structure. To this end, we propose infoCAM, informative class activation map, which highlights regions of the input image that are the most relevant to a given label based on differences in information. The activation map helps localise the target object in an input image. Through experiments on the semi-supervised object localisation task with two real-world datasets, we evaluate the effectiveness of our information-theoretic approach.
Neural networks are commonly used as models for classification for a wide variety of tasks. Typically, a learned affine transformation is placed at the end of such models, yielding a per-class value used for classification. This classifier can have a vast number of parameters, which grows linearly with the number of possible classes, thus requiring increasingly more resources. In this work we argue that this classifier can be fixed, up to a global scale constant, with little or no loss of accuracy for most tasks, allowing memory and computational benefits. Moreover, we show that by initializing the classifier with a Hadamard matrix we can speed up inference as well. We discuss the implications for current understanding of neural network models.
Heart Failure is a major component of healthcare expenditure and a leading cause of mortality worldwide. Despite higher inter-rater variability, endomyocardial biopsy (EMB) is still regarded as the standard technique, used to identify the cause (e.g. ischemic or non-ischemic cardiomyopathy, coronary artery disease, myocardial infarction etc.) of unexplained heart failure. In this paper, we focus on identifying cardiomyopathy as ischemic or non-ischemic. For this, we propose and implement a new unified architecture comprising CNN (inception-V3 model) and bidirectional LSTM (BiLSTM) with self-attention mechanism to predict the ischemic or non-ischemic to classify cardiomyopathy using histopathological images. The proposed model is based on self-attention that implicitly focuses on the information outputted from the hidden layers of BiLSTM. Through our results we demonstrate that this framework carries a high learning capacity and is able to improve the classification performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا