ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the net circular polarization of the stochastic gravitational wave background with interferometers

70   0   0.0 ( 0 )
 نشر من قبل Angelo Ricciardone
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Parity violating interactions in the early Universe can source a stochastic gravitational wave background (SGWB) with a net circular polarization. In this paper, we study possible ways to search for circular polarization of the SGWB with interferometers. Planar detectors are unable to measure the net circular polarization of an isotropic SGWB. We discuss the possibility of using the dipolar anisotropy kinematically induced by the motion of the solar system with respect to the cosmic reference frame to measure the net circular polarization of the SGWB with planar detectors. We apply this approach to LISA, re-assessing previous analyses by means of a more detailed computation and using the most recent instrument specifications, and to the Einstein Telescope (ET), estimating for the first time its sensitivity to circular polarization. We find that both LISA and ET, despite operating at different frequencies, could detect net circular polarization with a signal-to-noise ratio of order one in a SGWB with amplitude $h^2 Omega_text{GW} simeq 10^{-11}$. We also investigate the case of a network of ground based detectors. We present fully analytical, covariant formulas for the detector overlap functions in the presence of circular polarization. Our formulas do not rely on particular choices of reference frame, and can be applied to interferometers with arbitrary angles among their arms.



قيم البحث

اقرأ أيضاً

When modified theories of gravity are considered, at most six gravitational wave polarization modes are allowed and classified in tensor modes, the only ones predicted by General Relativity (GR), along with additional vector and scalar modes. Therefo re, gravitational waves represent a powerful tool to test alternative theories of gravitation. In this paper, we forecast the sensitivity of third-generation ground-based interferometers, Einstein Telescope and Cosmic Explorer, to non-GR polarization modes focusing on the stochastic gravitational wave background. We consider the latest technical specifications of the two independent detectors and the full network in order to estimate both the optimal signal-to-noise ratio and the detectable energy density limits relative to all polarization modes in the stochastic background for several locations on Earth and orientations of the two observatories. By considering optimal detector configurations, we find that in 5 years of observation the detection limit for tensor and extra polarization modes could reach $h_0^2Omega^{T,V,S}_{GW} approx 10^{-12}-10^{-11}$, depending on the network configuration and the stochastic background (i.e., if only one among vector and scalar modes exists or both are present). This means that the network sensitivity to different polarization modes can be approximately improved by a factor $10^3$ with respect to second-generation interferometers. We finally discuss the possibility of breaking the scalar modes degeneracy by considering both detectors angular responses to sufficiently high gravitational wave frequencies.
Stochastic gravitational wave backgrounds, predicted in many models of the early universe and also generated by various astrophysical processes, are a powerful probe of the Universe. The spectral shape is key information to distinguish the origin of the background since different production mechanisms predict different shapes of the spectrum. In this paper, we investigate how precisely future gravitational wave detectors can determine the spectral shape using single and broken power-law templates. We consider the detector network of Advanced-LIGO, Advanced-Virgo and KAGRA and the space-based gravitational-wave detector DECIGO, and estimate the parameter space which could be explored by these detectors. We find that, when the spectrum changes its slope in the frequency range of the sensitivity, the broken power-law templates dramatically improve the $chi^2$ fit compared with the single power-law templates and help to measure the shape with a good precision.
We discuss the observability of circular polarisation of the stochastic gravitational-wave background (SGWB) generated by helical turbulence following a first-order cosmological phase transition, using a model that incorporates the effects of both di rect and inverse energy cascades. We explore the strength of the gravitational-wave signal and the dependence of its polarisation on the helicity fraction, $zeta_*$, the strength of the transition, $alpha$, the bubble size, $R_*$, and the temperature, $T_*$, at which the transition finishes. We calculate the prospective signal-to-noise ratios of the SGWB strength and polarisation signals in the LISA experiment, exploring the parameter space in a way that is minimally sensitive to the underlying particle physics model. We find that discovery of SGWB polarisation is generally more challenging than measuring the total SGWB signal, but would be possible for appropriately strong transitions with large bubble sizes and a substantial polarisation fraction.
We present a set of tools to assess the capabilities of LISA to detect and reconstruct the spectral shape and amplitude of a stochastic gravitational wave background (SGWB). We first provide the LISA power-law sensitivity curve and binned power-law s ensitivity curves, based on the latest updates on the LISA design. These curves are useful to make a qualitative assessment of the detection and reconstruction prospects of a SGWB. For a quantitative reconstruction of a SGWB with arbitrary power spectrum shape, we propose a novel data analysis technique: by means of an automatized adaptive procedure, we conveniently split the LISA sensitivity band into frequency bins, and fit the data inside each bin with a power law signal plus a model of the instrumental noise. We apply the procedure to SGWB signals with a variety of representative frequency profiles, and prove that LISA can reconstruct their spectral shape. Our procedure, implemented in the code SGWBinner, is suitable for homogeneous and isotropic SGWBs detectable at LISA, and it is also expected to work for other gravitational wave observatories.
We study the sensitivity of a pair of Einstein Telescopes (ET) (hypothetically located at the two sites currently under consideration for ET) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We focus on the $ell =0,2,4$ mul tipoles of an expansion of the SGWB in spherical harmonics, since the sensitivity to other multipoles is suppressed due to the fact that this pair of detector operates in a regime for which the product between the observed frequency and the distance between the two sites is much smaller than one. In this regime, the interferometer overlap functions for the anisotropic signal acquire very simple analytic expressions. These expressions can also be applied to any other pairs of interferometers (each one of arbitrary opening angle between its two arms) operating in this regime. Once the measurements at the vertices of the two sites are optimally combined, the sensitivity to the multipoles of the SGWB depends only on the latitude of the two sites, on the difference of their longitude, but not on the orientation of their arms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا