ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstructing the spectral shape of a stochastic gravitational wave background with LISA

78   0   0.0 ( 0 )
 نشر من قبل Germano Nardini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a set of tools to assess the capabilities of LISA to detect and reconstruct the spectral shape and amplitude of a stochastic gravitational wave background (SGWB). We first provide the LISA power-law sensitivity curve and binned power-law sensitivity curves, based on the latest updates on the LISA design. These curves are useful to make a qualitative assessment of the detection and reconstruction prospects of a SGWB. For a quantitative reconstruction of a SGWB with arbitrary power spectrum shape, we propose a novel data analysis technique: by means of an automatized adaptive procedure, we conveniently split the LISA sensitivity band into frequency bins, and fit the data inside each bin with a power law signal plus a model of the instrumental noise. We apply the procedure to SGWB signals with a variety of representative frequency profiles, and prove that LISA can reconstruct their spectral shape. Our procedure, implemented in the code SGWBinner, is suitable for homogeneous and isotropic SGWBs detectable at LISA, and it is also expected to work for other gravitational wave observatories.


قيم البحث

اقرأ أيضاً

Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper ties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions $Gmu gtrsim mathcal{O}(10^{-17})$, improving by about $6$ orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially $3$ orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISAs frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
Stochastic gravitational wave backgrounds, predicted in many models of the early universe and also generated by various astrophysical processes, are a powerful probe of the Universe. The spectral shape is key information to distinguish the origin of the background since different production mechanisms predict different shapes of the spectrum. In this paper, we investigate how precisely future gravitational wave detectors can determine the spectral shape using single and broken power-law templates. We consider the detector network of Advanced-LIGO, Advanced-Virgo and KAGRA and the space-based gravitational-wave detector DECIGO, and estimate the parameter space which could be explored by these detectors. We find that, when the spectrum changes its slope in the frequency range of the sensitivity, the broken power-law templates dramatically improve the $chi^2$ fit compared with the single power-law templates and help to measure the shape with a good precision.
Parity violating interactions in the early Universe can source a stochastic gravitational wave background (SGWB) with a net circular polarization. In this paper, we study possible ways to search for circular polarization of the SGWB with interferomet ers. Planar detectors are unable to measure the net circular polarization of an isotropic SGWB. We discuss the possibility of using the dipolar anisotropy kinematically induced by the motion of the solar system with respect to the cosmic reference frame to measure the net circular polarization of the SGWB with planar detectors. We apply this approach to LISA, re-assessing previous analyses by means of a more detailed computation and using the most recent instrument specifications, and to the Einstein Telescope (ET), estimating for the first time its sensitivity to circular polarization. We find that both LISA and ET, despite operating at different frequencies, could detect net circular polarization with a signal-to-noise ratio of order one in a SGWB with amplitude $h^2 Omega_text{GW} simeq 10^{-11}$. We also investigate the case of a network of ground based detectors. We present fully analytical, covariant formulas for the detector overlap functions in the presence of circular polarization. Our formulas do not rely on particular choices of reference frame, and can be applied to interferometers with arbitrary angles among their arms.
We study the sensitivity of a pair of Einstein Telescopes (ET) (hypothetically located at the two sites currently under consideration for ET) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We focus on the $ell =0,2,4$ mul tipoles of an expansion of the SGWB in spherical harmonics, since the sensitivity to other multipoles is suppressed due to the fact that this pair of detector operates in a regime for which the product between the observed frequency and the distance between the two sites is much smaller than one. In this regime, the interferometer overlap functions for the anisotropic signal acquire very simple analytic expressions. These expressions can also be applied to any other pairs of interferometers (each one of arbitrary opening angle between its two arms) operating in this regime. Once the measurements at the vertices of the two sites are optimally combined, the sensitivity to the multipoles of the SGWB depends only on the latitude of the two sites, on the difference of their longitude, but not on the orientation of their arms.
In this work, we study the prospect of detecting the stochastic gravitational-wave background with the TianQin observatory. We consider both astrophysical-origin and cosmological-origin sources, including stellar-mass binary black holes, binary neutr on stars, Galactic white dwarves, inflation, first order phase transition, and cosmic defects. For the detector configurations, we considered TianQin, TianQin I+II and TianQin + LISA. We studied the detectability of stochastic gravitational-wave backgrounds with the assumed methods of both cross-correlation and null channel, and present the corresponding power-law integrated sensitivity curves. We introduce the definition of the joint foreground with a network of detectors. With the joint foreground, the number of resolved double white dwarves in the Galaxy will be increased by 5% $sim$ 22% compared with simple combination of individual detectors. The astrophysical background from the binary black holes and the binary neutron stars under the theoretical models are predicted to be detectable with signal-to-noise ratio of around 10 after five years operation. As for the cosmological sources, their models are highly uncertain, and we only roughly estimate the detection capability under certain cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا