ﻻ يوجد ملخص باللغة العربية
The Boltzmann kinetic equation is considered to evaluate the first-order contributions $T_i^{(1)}$ to the partial temperatures in binary granular suspensions at low density. The influence of the surrounding gas on the solid particles is modeled via a drag force proportional to the particle velocity plus a stochastic Langevin-like term. The Boltzmann equation is solved by means of the Chapman--Enskog expansion around the local version of the reference homogeneous base state. To first-order in spatial gradients, the coefficients $T_i^{(1)}$ are computed by considering the leading terms in a Sonine polynomial expansion. In addition, the influence of $T_i^{(1)}$ on the first-order contribution $zeta^{(1)}$ to the cooling rate is also assessed. Our results show that the magnitude of both $T_i^{(1)}$ and $zeta^{(1)}$ can be relevant for some values of the parameter space of the system.
The Chapman--Enskog solution to the Enskog kinetic equation of polydisperse granular mixtures is revisited to determine the first-order contributions $varpi_i$ to the partial temperatures. As expected, these quantities (which were neglected in previo
Many features of granular media can be modelled as a fluid of hard spheres with {em inelastic} collisions. Under rapid flow conditions, the macroscopic behavior of grains can be described through hydrodynamic equations. At low-density, a fundamental
The Enskog kinetic theory for moderately dense granular suspensions is considered as a model to determine the Navier-Stokes transport coefficients. The influence of the interstitial gas on solid particles is modeled by a viscous drag force term plus
We study the stationary state of a rough granular sphere immersed in a thermal bath composed of point particles. When the center of mass of the sphere is fixed the stationary angular velocity distribution is shown to be Gaussian with an effective tem
The Navier--Stokes transport coefficients of multicomponent granular suspensions at moderate densities are obtained in the context of the (inelastic) Enskog kinetic theory. The suspension is modeled as an ensemble of solid particles where the influen