ﻻ يوجد ملخص باللغة العربية
The reverse derivative is a fundamental operation in machine learning and automatic differentiation. This paper gives a direct axiomatization of a category with a reverse derivative operation, in a similar style to that given by Cartesian differential categories for a forward derivative. Intriguingly, a category with a reverse derivative also has a forward derivative, but the converse is not true. In fact, we show explicitly what a forward derivative is missing: a reverse derivative is equivalent to a forward derivative with a dagger structure on its subcategory of linear maps. Furthermore, we show that these linear maps form an additively enriched category with dagger biproducts.
The word problem for categories with free products and coproducts (sums), SP-categories, is directly related to the problem of determining the equivalence of certain processes. Indeed, the maps in these categories may be directly interpreted as proce
Let $mathscr{F}$ be an $(n+2)$-angulated Krull-Schmidt category and $mathscr{A} subset mathscr{F}$ an $n$-extension closed, additive and full subcategory with $operatorname{Hom}_{mathscr{F}}(Sigma_n mathscr{A}, mathscr{A}) = 0$. Then $mathscr{A}$ nat
C*-categories are essentially norm-closed *-categories of bounded linear operators between Hilbert spaces. The purpose of this work is to identify suitable axioms defining Krein C*-categories, i.e. those categories that play the role of C*-categories
The notion of right semi-equivalence in a right $(n+2)$-angulated category is defined in this article. Let $mathscr C$ be an $n$-exangulated category and $mathscr X$ is a strongly covariantly finite subcategory of $mathscr C$. We prove that the stand
For a finite group G, we introduce the complete suboperad $Q_G$ of the categorical G-Barratt-Eccles operad $P_G$. We prove that $P_G$ is not finitely generated, but $Q_G$ is finitely generated and is a genuine $E_infty$ G-operad (i.e., it is $N_infty