ﻻ يوجد ملخص باللغة العربية
Despite significant efforts over the last few years to build a robust automatic speech recognition (ASR) system for different acoustic settings, the performance of the current state-of-the-art technologies significantly degrades in noisy reverberant environments. Convolutional Neural Networks (CNNs) have been successfully used to achieve substantial improvements in many speech processing applications including distant speech recognition (DSR). However, standard CNN architectures were not efficient in capturing long-term speech dynamics, which are essential in the design of a robust DSR system. In the present study, we address this issue by investigating variants of large receptive field CNNs (LRF-CNNs) which include deeply recursive networks, dilated convolutional neural networks, and stacked hourglass networks. To compare the efficacy of the aforementioned architectures with the standard CNN for Wall Street Journal (WSJ) corpus, we use a hybrid DNN-HMM based speech recognition system. We extend the study to evaluate the system performances for distant speech simulated using realistic room impulse responses (RIRs). Our experiments show that with fixed number of parameters across all architectures, the large receptive field networks show consistent improvements over the standard CNNs for distant speech. Amongst the explored LRF-CNNs, stacked hourglass network has shown improvements with a 8.9% relative reduction in word error rate (WER) and 10.7% relative improvement in frame accuracy compared to the standard CNNs for distant simulated speech signals.
Time Delay Neural Networks (TDNNs) are widely used in both DNN-HMM based hybrid speech recognition systems and recent end-to-end systems. Nevertheless, the receptive fields of TDNNs are limited and fixed, which is not desirable for tasks like speech
Automatic speech recognition in multi-channel reverberant conditions is a challenging task. The conventional way of suppressing the reverberation artifacts involves a beamforming based enhancement of the multi-channel speech signal, which is used to
Distant speech recognition is being revolutionized by deep learning, that has contributed to significantly outperform previous HMM-GMM systems. A key aspect behind the rapid rise and success of DNNs is their ability to better manage large time contex
While recurrent neural networks still largely define state-of-the-art speech recognition systems, the Transformer network has been proven to be a competitive alternative, especially in the offline condition. Most studies with Transformers have been c
Recurrent neural networks (RNN) are at the core of modern automatic speech recognition (ASR) systems. In particular, long-short term memory (LSTM) recurrent neural networks have achieved state-of-the-art results in many speech recognition tasks, due