ﻻ يوجد ملخص باللغة العربية
The suppression of high momentum particles in heavy-ion collisions in comparison to elementary reactions is one of the main indications for the formation of a quark-gluon plasma. In recent studies, full jets are being reconstructed and substructure observables are gaining importance in assessing the medium modifications of hard probes. In this work, the effect of the late stage hadronic interactions are explored within the hadronic transport approach SMASH (Simulating Many Accelerated Strongly-interacting Hadrons). High momentum particles are incorporated in a radially expanding hadron gas to analyse the corresponding angular distributions, also refered to as `jet shape observables. We find that the full hadron gas can be approximated with a pion gas with constant elastic cross-sections of 100 mb. In addition, the temperature and probe energy dependence of diffusion coefficients $tilde{q}$ and $tilde{e}$ quantifying the transverse and parallel momentum transfers are extracted. The species dependence and the importance of different interaction types are investigated. Parametrizations are presented that can be employed in future jet quenching calculations to include the effect of the hadronic phase.
We present a jet quenching model within a unified multi-stage framework and demonstrate for the first time a simultaneous description of leading hadrons, inclusive jets, and elliptic flow observables which spans multiple centralities and collision en
Within five different approaches to parton propagation and energy loss in dense matter, a phenomenological study of experimental data on suppression of large $p_T$ single inclusive hadrons in heavy-ion collisions at both RHIC and LHC was carried out.
The shear viscosity $eta$ in the van der Waals excluded volume hadron-resonance gas model is considered. For the shear viscosity the result of the non-relativistic gas of hard-core particles is extended to the mixture of particles with different mass
In this work we study the interactions of bottom mesons which lead to $Upsilon$ production and absorption in hot hadronic matter. We use effective Lagrangians to calculate the $Upsilon$ production cross section in processes such as $ bar{B}^{(*)} + B
The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes b