ﻻ يوجد ملخص باللغة العربية
We present a jet quenching model within a unified multi-stage framework and demonstrate for the first time a simultaneous description of leading hadrons, inclusive jets, and elliptic flow observables which spans multiple centralities and collision energies. This highlights one of the major successes of the JETSCAPE framework in providing a tool for setting up an effective parton evolution that includes a high-virtuality radiation dominated energy loss phase (MATTER), followed by a low-virtuality scattering dominated (LBT) energy loss phase. Measurements of jet and charged-hadron $R_{AA}$ set strong constraints on the jet quenching model. Jet-medium response is also included through a weakly-coupled transport description.
We present a multi-stage model for jet evolution through a quark-gluon plasma within the JETSCAPE framework. The multi-stage approach in JETSCAPE provides a unified description of distinct phases in jet shower contingent on the virtuality. We demonst
The modification of hard jets in an extended static medium held at a fixed temperature is studied using three different Monte-Carlo event generators (LBT, MATTER, MARTINI). Each event generator contains a different set of assumptions regarding the en
This article presents the motivation for developing a comprehensive modeling framework in which different models and parameter inputs can be compared and evaluated for a large range of jet-quenching observables measured in relativistic heavy-ion coll
Within five different approaches to parton propagation and energy loss in dense matter, a phenomenological study of experimental data on suppression of large $p_T$ single inclusive hadrons in heavy-ion collisions at both RHIC and LHC was carried out.
The JETSCAPE Collaboration has recently announced the first release of the JETSCAPE package that provides a modular, flexible, and extensible Monte Carlo event generator. This innovative framework makes it possible to perform a comprehensive study of