ترغب بنشر مسار تعليمي؟ اضغط هنا

Text2Math: End-to-end Parsing Text into Math Expressions

113   0   0.0 ( 0 )
 نشر من قبل Yanyan Zou
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose Text2Math, a model for semantically parsing text into math expressions. The model can be used to solve different math related problems including arithmetic word problems and equation parsing problems. Unlike previous approaches, we tackle the problem from an end-to-end structured prediction perspective where our algorithm aims to predict the complete math expression at once as a tree structure, where minimal manual efforts are involved in the process. Empirical results on benchmark datasets demonstrate the efficacy of our approach.



قيم البحث

اقرأ أيضاً

277 - Peng Shi , Tao Yu , Patrick Ng 2021
In this work, we focus on two crucial components in the cross-domain text-to-SQL semantic parsing task: schema linking and value filling. To encourage the model to learn better encoding ability, we propose a column selection auxiliary task to empower the encoder with the relevance matching capability by using explicit learning targets. Furthermore, we propose two value filling methods to build the bridge from the existing zero-shot semantic parsers to real-world applications, considering most of the existing parsers ignore the values filling in the synthesized SQL. With experiments on Spider, our proposed framework improves over the baselines on the execution accuracy and exact set match accuracy when database contents are unavailable, and detailed analysis sheds light on future work.
We present a graph-based Tree Adjoining Grammar (TAG) parser that uses BiLSTMs, highway connections, and character-level CNNs. Our best end-to-end parser, which jointly performs supertagging, POS tagging, and parsing, outperforms the previously repor ted best results by more than 2.2 LAS and UAS points. The graph-based parsing architecture allows for global inference and rich feature representations for TAG parsing, alleviating the fundamental trade-off between transition-based and graph-based parsing systems. We also demonstrate that the proposed parser achieves state-of-the-art performance in the downstream tasks of Parsing Evaluation using Textual Entailments (PETE) and Unbounded Dependency Recovery. This provides further support for the claim that TAG is a viable formalism for problems that require rich structural analysis of sentences.
In this work, we propose a new solution for parallel wave generation by WaveNet. In contrast to parallel WaveNet (van den Oord et al., 2018), we distill a Gaussian inverse autoregressive flow from the autoregressive WaveNet by minimizing a regularize d KL divergence between their highly-peaked output distributions. Our method computes the KL divergence in closed-form, which simplifies the training algorithm and provides very efficient distillation. In addition, we introduce the first text-to-wave neural architecture for speech synthesis, which is fully convolutional and enables fast end-to-end training from scratch. It significantly outperforms the previous pipeline that connects a text-to-spectrogram model to a separately trained WaveNet (Ping et al., 2018). We also successfully distill a parallel waveform synthesizer conditioned on the hidden representation in this end-to-end model.
We describe a sequence-to-sequence neural network which directly generates speech waveforms from text inputs. The architecture extends the Tacotron model by incorporating a normalizing flow into the autoregressive decoder loop. Output waveforms are m odeled as a sequence of non-overlapping fixed-length blocks, each one containing hundreds of samples. The interdependencies of waveform samples within each block are modeled using the normalizing flow, enabling parallel training and synthesis. Longer-term dependencies are handled autoregressively by conditioning each flow on preceding blocks.This model can be optimized directly with maximum likelihood, with-out using intermediate, hand-designed features nor additional loss terms. Contemporary state-of-the-art text-to-speech (TTS) systems use a cascade of separately learned models: one (such as Tacotron) which generates intermediate features (such as spectrograms) from text, followed by a vocoder (such as WaveRNN) which generates waveform samples from the intermediate features. The proposed system, in contrast, does not use a fixed intermediate representation, and learns all parameters end-to-end. Experiments show that the proposed model generates speech with quality approaching a state-of-the-art neural TTS system, with significantly improved generation speed.
End-to-end Speech-to-text Translation (E2E-ST), which directly translates source language speech to target language text, is widely useful in practice, but traditional cascaded approaches (ASR+MT) often suffer from error propagation in the pipeline. On the other hand, existing end-to-end solutions heavily depend on the source language transcriptions for pre-training or multi-task training with Automatic Speech Recognition (ASR). We instead propose a simple technique to learn a robust speech encoder in a self-supervised fashion only on the speech side, which can utilize speech data without transcription. This technique termed Masked Acoustic Modeling (MAM), not only provides an alternative solution to improving E2E-ST, but also can perform pre-training on any acoustic signals (including non-speech ones) without annotation. We conduct our experiments over 8 different translation directions. In the setting without using any transcriptions, our technique achieves an average improvement of +1.1 BLEU, and +2.3 BLEU with MAM pre-training. Pre-training of MAM with arbitrary acoustic signals also has an average improvement with +1.6 BLEU for those languages. Compared with ASR multi-task learning solution, which replies on transcription during training, our pre-trained MAM model, which does not use transcription, achieves similar accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا