ﻻ يوجد ملخص باللغة العربية
Quantum sensing exploits fundamental features of quantum system to achieve highly efficient measurement of physical quantities. Here, we propose a strategy to realize a single-qubit pseudo-Hermitian sensor from a dilated two-qubit Hermitian system. The pseudo-Hermitian sensor exhibits divergent susceptibility in dynamical evolution that does not necessarily involve exceptional point. We demonstrate its potential advantages to overcome noises that cannot be averaged out by repetitive measurements. The proposal is feasible with the state-of-art experimental capability in a variety of qubit systems, and represents a step towards the application of non-Hermitian physics in quantum sensing.
Well-controlled quantum devices with their increasing system size face a new roadblock hindering further development of quantum technologies: The effort of quantum tomography---the characterization of processes and states within a quantum device---sc
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian
Hybrid quantum devices expand the tools and techniques available for quantum sensing in various fields. Here, we experimentally demonstrate quantum sensing of the steady-state magnon population in a magnetostatic mode of a ferrimagnetic crystal. Disp
The emergence of parity-time ($mathcal{PT}$) symmetry has greatly enriched our study of symmetry-enabled non-Hermitian physics, but the realization of quantum $mathcal{PT}$-symmetry faces an intrinsic issue of unavoidable symmetry-breaking Langevin n
In this work, a classical-quantum correspondence for two-level pseudo-Hermitian systems is proposed and analyzed. We show that the presence of a complex external field can be described by a pseudo-Hermitian Hamiltonian if there is a suitable canonica