ﻻ يوجد ملخص باللغة العربية
Well-controlled quantum devices with their increasing system size face a new roadblock hindering further development of quantum technologies: The effort of quantum tomography---the characterization of processes and states within a quantum device---scales unfavorably to the point that state-of-the-art systems can no longer be treated. Quantum compressed sensing mitigates this problem by reconstructing the state from an incomplete set of observables. In this work, we present an experimental implementation of compressed tomography of a seven qubit system---the largest-scale realization to date---and we introduce new numerical methods in order to scale the reconstruction to this dimension. Originally, compressed sensing has been advocated for density matrices with few non-zero eigenvalues. Here, we argue that the low-rank estimates provided by compressed sensing can be appropriate even in the general case. The reason is that statistical noise often allows only for the leading eigenvectors to be reliably reconstructed: We find that the remaining eigenvectors behave in a way consistent with a random matrix model that carries no information about the true state. We report a reconstruction of quantum states from a topological color code of seven qubits, prepared in a trapped ion architecture, based on tomographically incomplete data involving 127 Pauli basis measurement settings only, repeated 100 times each.
Quantum sensing exploits fundamental features of quantum system to achieve highly efficient measurement of physical quantities. Here, we propose a strategy to realize a single-qubit pseudo-Hermitian sensor from a dilated two-qubit Hermitian system. T
We propose and demonstrate the scaling up of photonic graph state through path qubit fusion. Two path qubits from separate two-photon four-qubit states are fused to generate a two-dimensional seven-qubit graph state composed of polarization and path
Quantum teleportation, a way to transfer the state of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols. Previous experimental demonstrations ha
In the light of the progress in quantum technologies, the task of verifying the correct functioning of processes and obtaining accurate tomographic information about quantum states becomes increasingly important. Compressed sensing, a machinery deriv
Quantum systems can be exquisite sensors thanks to their sensitivity to external perturbations. This same characteristic also makes them fragile to external noise. Quantum control can tackle the challenge of protecting quantum sensors from environmen