ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Step Sizes in Variance Reduction via Regularization

124   0   0.0 ( 0 )
 نشر من قبل Bingcong Li
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The main goal of this work is equipping convex and nonconvex problems with Barzilai-Borwein (BB) step size. With the adaptivity of BB step sizes granted, they can fail when the objective function is not strongly convex. To overcome this challenge, the key idea here is to bridge (non)convex problems and strongly convex ones via regularization. The proposed regularization schemes are textit{simple} yet effective. Wedding the BB step size with a variance reduction method, known as SARAH, offers a free lunch compared with vanilla SARAH in convex problems. The convergence of BB step sizes in nonconvex problems is also established and its complexity is no worse than other adaptive step sizes such as AdaGrad. As a byproduct, our regularized SARAH methods for convex functions ensure that the complexity to find $mathbb{E}[| abla f(mathbf{x}) |^2]leq epsilon$ is ${cal O}big( (n+frac{1}{sqrt{epsilon}})ln{frac{1}{epsilon}}big)$, improving $epsilon$ dependence over existing results. Numerical tests further validate the merits of proposed approaches.



قيم البحث

اقرأ أيضاً

Variational Inference makes a trade-off between the capacity of the variational family and the tractability of finding an approximate posterior distribution. Instead, Boosting Variational Inference allows practitioners to obtain increasingly good pos terior approximations by spending more compute. The main obstacle to widespread adoption of Boosting Variational Inference is the amount of resources necessary to improve over a strong Variational Inference baseline. In our work, we trace this limitation back to the global curvature of the KL-divergence. We characterize how the global curvature impacts time and memory consumption, address the problem with the notion of local curvature, and provide a novel approximate backtracking algorithm for estimating local curvature. We give new theoretical convergence rates for our algorithms and provide experimental validation on synthetic and real-world datasets.
163 - Hongyu Guo 2020
Label Smoothing (LS) is an effective regularizer to improve the generalization of state-of-the-art deep models. For each training sample the LS strategy smooths the one-hot encoded training signal by distributing its distribution mass over the non gr ound-truth classes, aiming to penalize the networks from generating overconfident output distributions. This paper introduces a novel label smoothing technique called Pairwise Label Smoothing (PLS). The PLS takes a pair of samples as input. Smoothing with a pair of ground-truth labels enables the PLS to preserve the relative distance between the two truth labels while further soften that between the truth labels and the other targets, resulting in models producing much less confident predictions than the LS strategy. Also, unlike current LS methods, which typically require to find a global smoothing distribution mass through cross-validation search, PLS automatically learns the distribution mass for each input pair during training. We empirically show that PLS significantly outperforms LS and the baseline models, achieving up to 30% of relative classification error reduction. We also visually show that when achieving such accuracy gains the PLS tends to produce very low winning softmax scores.
Recently, a variety of regularization techniques have been widely applied in deep neural networks, such as dropout, batch normalization, data augmentation, and so on. These methods mainly focus on the regularization of weight parameters to prevent ov erfitting effectively. In addition, label regularization techniques such as label smoothing and label disturbance have also been proposed with the motivation of adding a stochastic perturbation to labels. In this paper, we propose a novel adaptive label regularization method, which enables the neural network to learn from the erroneous experience and update the optimal label representation online. On the other hand, compared with knowledge distillation, which learns the correlation of categories using teacher network, our proposed method requires only a minuscule increase in parameters without cumbersome teacher network. Furthermore, we evaluate our method on CIFAR-10/CIFAR-100/ImageNet datasets for image recognition tasks and AGNews/Yahoo/Yelp-Full datasets for text classification tasks. The empirical results show significant improvement under all experimental settings.
Recent advances in deep reinforcement learning have achieved human-level performance on a variety of real-world applications. However, the current algorithms still suffer from poor gradient estimation with excessive variance, resulting in unstable tr aining and poor sample efficiency. In our paper, we proposed an innovative optimization strategy by utilizing stochastic variance reduced gradient (SVRG) techniques. With extensive experiments on Atari domain, our method outperforms the deep q-learning baselines on 18 out of 20 games.
As application demands for zeroth-order (gradient-free) optimization accelerate, the need for variance reduced and faster converging approaches is also intensifying. This paper addresses these challenges by presenting: a) a comprehensive theoretical analysis of variance reduced zeroth-order (ZO) optimization, b) a novel variance reduced ZO algorithm, called ZO-SVRG, and c) an experimental evaluation of our approach in the context of two compelling applications, black-box chemical material classification and generation of adversarial examples from black-box deep neural network models. Our theoretical analysis uncovers an essential difficulty in the analysis of ZO-SVRG: the unbiased assumption on gradient estimates no longer holds. We prove that compared to its first-order counterpart, ZO-SVRG with a two-point random gradient estimator could suffer an additional error of order $O(1/b)$, where $b$ is the mini-batch size. To mitigate this error, we propose two accelerate

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا