ﻻ يوجد ملخص باللغة العربية
The Short Baseline Near Detector (SBND) is one of three liquid argon (LAr) neutrino detectors sitting in the Booster Neutrino Beam (BNB) at Fermilab as part of the Short Baseline Neutrino (SBN) program. The detector is in a cryostat holding 260-ton of LAr and consists of four 2.5 m (L) $times$ 4 m (W) Anode Plane Assembles (APAs) and two Cathode Plane Assemblies (CPAs), which leads to 11,264 Time Projection Chamber (TPC) readout channels and two separate 2 m long drift regions. As an enabling technology, Cold Electronics (CE) developed for cryogenic temperature operation makes possible an optimum balance among various design and performance requirements for such large sized detectors. Brookhaven National Laboratory (BNL) has been leading the R&D and implementation of the entire front-end CE system for LAr TPC readout in collaboration with other SBND institutes. The front-end readout electronics system includes the cold front-end electronics placed close to the wire electrodes, which detects and digitizes the charge signal in LAr, as well as the warm interface electronics placed on the signal feed-through flange outside of the cryostat, which further organizes and transmits the digitized signal to the DAQ system. An extensive study of electronics suitable for 77 K - 300 K, including the custom designed front-end ASIC and commercial components, e.g. ADC and FPGA, has been made to meet requirements such as low noise, low power consumption, high reliability and long lifetime. Furthermore, an integral design concept of APA, CE, feed-through, warm interface electronics with local diagnostics, grounding and isolation rules has been practiced with vertical slice test stands to make projection of the CE performance in the SBND detector.
Short Baseline Near Detector (SBND), which is a 260-ton LAr TPC as near detector in Short Baseline Neutrino (SBN) program, consists of 11,264 TPC readout channels. As an enabling technology for noble liquid detectors in neutrino experiments, cold ele
ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance including a comparison of the new cryogen
In this paper we give a concise description of a liquid argon time projection chamber (LAr TPC) developed at Yale, and present results from its first calibration run with cosmic rays.
The dual phase Liquid Argon Time Projection Chamber (LAr TPC) is the state-of-art technology for neutrino detection thanks to its superb 3D tracking and calorimetry performance. Its main feature is the charge amplification in gas argon which provides
For the future neutrino oscillation experiment DUNE, liquid argon time projections chambers with a fiducial mass of 10 kton each are foreseen. The dual phase concept is one of the two implementations considered, wherein electrons produced by ionizati