ﻻ يوجد ملخص باللغة العربية
For the future neutrino oscillation experiment DUNE, liquid argon time projections chambers with a fiducial mass of 10 kton each are foreseen. The dual phase concept is one of the two implementations considered, wherein electrons produced by ionization in the liquid are extracted to a gaseous region above the liquid where they are amplified. For the amplification, large electron multipliers will be used. The technology was tested in various prototypes, most recently with a 3 x 1 x 1 m$^3$ large setup. An even larger prototype of 6 x 6 x 6 m$^3$ is currently being constructed and will start operation in 2019. An intensive R&D program was carried out with the focus on achieving an effective gain of at least 20. In the simulation study here presented for the first time not only the electron signal is considered but also the ion backflow and the expected production of secondary scintillation light is studied, because the latter might limit the capability of the detector to trigger on low energetic no-beam physics. It is found that the ion backflow and the light yield can be expected to be very large. The results for the effective gain show a discrepancy with experimental data, both in size and shape of the gain curve. Based on literature studies, it is argued that photon feedback contributes to the gain in detectors filled with pure noble gases, especially in the case of pure argon.
ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance including a comparison of the new cryogen
The dual phase Liquid Argon Time Projection Chamber (LAr TPC) is the state-of-art technology for neutrino detection thanks to its superb 3D tracking and calorimetry performance. Its main feature is the charge amplification in gas argon which provides
A double-phase argon Time Projection Chamber (TPC), with an active mass of 185 g, has been designed and constructed for the Recoil Directionality (ReD) experiment. The aim of the ReD project is to investigate the directional sensitivity of argon-base
In this paper we describe the design, construction, and operation of a first large area double-phase liquid argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). The detector has a maximum drift length of 60 cm and the readout consis
Short Baseline Near Detector (SBND), which is a 260-ton LAr TPC as near detector in Short Baseline Neutrino (SBN) program, consists of 11,264 TPC readout channels. As an enabling technology for noble liquid detectors in neutrino experiments, cold ele