ترغب بنشر مسار تعليمي؟ اضغط هنا

Interaction of SN~Ib 2004dk with a Previously-Expelled Envelope

240   0   0.0 ( 0 )
 نشر من قبل David Pooley
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction between the expanding supernova (SN) ejecta with the circumstellar material (CSM) that was expelled from the progenitor prior to explosion is a long-sought phenomenon, yet observational evidence is scarce. Here we confirm a new example: SN 2004dk, originally a hydrogen-poor, helium-rich Type Ib SN that reappeared as a strong H$alpha$-emitting point-source on narrowband H$alpha$ images. We present follow-up optical spectroscopy that reveals the presence of a broad H$alpha$ component with full width at half maximum of ~290 km/s in addition to the narrow H$alpha$ +[NII] emission features from the host galaxy. Such a broad component is a clear sign of an ejecta-CSM interaction. We also present observations with the XMM-Newton Observatory, the Swift satellite, and the Chandra X-ray Observatory that span 10 days to 15 years after discovery. The detection of strong radio, X-ray, and H$alpha$ emission years after explosion allows various constraints to be put on pre-SN mass-loss processes. We present a wind-bubble model in which the CSM is pre-prepared by a fast wind interacting with a slow wind. Much of the outer density profile into which the SN explodes corresponds to no steady-state mass-loss process. We estimate that the shell of compressed slow wind material was ejected ~1400 yr prior to explosion, perhaps during carbon burning, and that the SN shock had swept up about 0.04 M_sun of material. The region emitting the H$alpha$ has a density of order $10^{-20}$ g/cc.

قيم البحث

اقرأ أيضاً

The dominant mechanism and time scales over which stripped-envelope supernovae (SNe) progenitor stars shed their hydrogen envelopes are uncertain. Observations of Type Ib and Ic SNe at late phases could reveal the optical signatures of interaction wi th distant circumstellar material (CSM) providing important clues on the origin of the necessary pre-SN mass loss. We report deep late-time optical spectroscopy of the Type Ib explosion SN 2004dk 4684 days (13 years) after discovery. Prominent intermediate-width H-alpha emission is detected, signaling that the SN blast wave has caught up with the hydrogen-rich CSM lost by the progenitor system. The line luminosity is the highest ever reported for a SN at this late stage. Prominent emission features of He, Fe, and Ca are also detected. The spectral characteristics are consistent with CSM energized by the forward shock, and resemble the late-time spectra of the persistently interacting Type IIn SNe 2005ip and 1988Z. We suggest that the onset of interaction with H-rich CSM was associated with a previously reported radio rebrightening at ~1700 days. The data indicate that the mode of pre-SN mass loss was a relatively slow dense wind that persisted millennia before the SN, followed by a short-lived Wolf-Rayet phase that preceded core-collapse and created a cavity within an extended distribution of CSM. We also present new spectra of SNe 2014C, PTF11iqb, and 2009ip, all of which also exhibit continued interaction with extended CSM distributions.
We present the photometric and spectroscopic studies of a Type Ib SN 2015ap and a Type Ic SN 2016P. SN 2015ap is one of the bright (M$_{V}$ = $-$18.04 mag) Type Ib while SN 2016P lies at an average value among the Type Ic SNe (M$_{V}$ = $-$17.53 mag) . Bolometric light curve modelling of SNe 2015ap and 2016P indicates that both the SNe are powered by $^{56}$Ni + magnetar model with $^{56}$Ni masses of 0.01 M$_{odot}$ and 0.002 M$_{odot}$, ejecta masses of 3.75 M$_{odot}$ and 4.66 M$_{odot}$, spin period P$_{0}$ of 25.8 ms and 36.5 ms and magnetic field B$_{p}$ of 28.39 $times$ 10$^{14}$ Gauss and 35.3 $times$ 10$^{14}$ Gauss respectively. The early spectra of SN 2015ap shows prominent lines of He with a W feature due to Fe complexes while other lines of Mg II, Na I and Si II are present in both SNe 2015ap and 2016P. Nebular phase [O I] profile indicates an asymmetric profile in SN 2015ap. The [O I]/[Ca II] ratio and nebular spectral modelling of SN 2015ap hints towards a progenitor mass between 12 $-$ 20 M$_{odot}$.
We present extensive observations of the Type Ib/c SN2013ge from -13 to +457 days, including spectra and Swift UV-optical photometry beginning 2-4 days post-explosion. This data set makes SN2013ge one of the best observed normal Type Ib/c SN at early times---when the light curve is particularly sensitive to the progenitor configuration and mixing of radioactive elements---and reveals two distinct light curve components in the UV bands. The first component rises over 4-5 days and is visible for the first week post-explosion. Spectra of the first component have blue continua and show a plethora of high velocity (~15,000 km/s) but narrow (~3500 km/s) features, indicating that the line-forming region is restricted. The explosion parameters estimated for the bulk explosion are standard for Type Ib/c SN, and there is evidence for weak He features at early times. In addition, SN2013ge exploded in a low metallicity environment and we have obtained some of the deepest radio and X-ray limits for a Type Ib/c SN to date, which constrain the progenitor mass-loss rate. We are left with two distinct progenitor scenarios for SN2013ge, depending on our interpretation of the early emission. If the first component is cooling envelope emission, then the progenitor of SN2013ge either possessed a low-mass extended envelope or ejected a portion of its envelope in the final <1 year before core-collapse. Alternatively, if the first component is due to outwardly mixed Ni-56, then our observations are consistent with the asymmetric ejection of a distinct clump of nickel-rich material at high velocities. Current models for the collision of a SN shock with a binary companion cannot reproduce both the timescale and luminosity of the early emission in SN2013ge. Finally, the spectra of the first component of SN2013ge are similar to those of the rapidly-declining SN2002bj.
We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6d until ~+150d after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absol ute magnitude is M_R=-18.7+-0.2 mag, which suggests that this supernova belongs to a very luminous group among Type Ib supernovae. The line velocity of He I {lambda}5876 is about 15,000 km/s around maximum, which is much faster than that in a typical Type Ib supernova. From the quasi-bolometric peak luminosity of (6.7+-1.3)x10^(42) erg/s, we estimate the Ni mass produced during the explosion as ~0.30 Msun. We also give a rough constraint to the ejecta mass 5-7 Msun and the kinetic energy (7-18)x10^(51) erg. We find a weak correlation between the peak absolute magnitude and He I velocity among Type Ib SNe. The similarities to SN 1998bw in the density structure inferred from the light curve model as well as the large peak bolometric luminosity suggest that SN 2012au had properties similar to energetic Type Ic supernovae.
The supernovae of Type Ibc are rare and the detailed characteristics of these explosions have been studied only for a few events. Unlike Type II SNe, the progenitors of Type Ibc have never been detected in pre-explosion images. So, to understand the nature of their progenitors and the characteristics of the explosions, investigation of proximate events are necessary. Here we present the results of multi-wavelength observations of Type Ib SN 2007uy in the nearby ($sim$ 29.5 Mpc) galaxy NGC 2770. Analysis of the photometric observations revealed this explosion as an energetic event with peak absolute R band magnitude $-18.5pm0.16$, which is about one mag brighter than the mean value ($-17.6pm0.6$) derived for well observed Type Ibc events. The SN is highly extinguished, E(B-V) = 0.63$pm$0.15 mag, mainly due to foreground material present in the host galaxy. From optical light curve modeling we determine that about 0.3 M$_{odot}$ radioactive $^{56}$Ni is produced and roughly 4.4 M$_{odot}$ material is ejected during this explosion with liberated energy $sim 15times10^{51}$ erg, indicating the event to be an energetic one. Through optical spectroscopy, we have noticed a clear aspheric evolution of several line forming regions, but no dependency of asymmetry is seen on the distribution of $^{56}$Ni inside the ejecta. The SN shock interaction with the circumburst material is clearly noticeable in radio follow-up, presenting a Synchrotron Self Absorption (SSA) dominated light curve with a contribution of Free Free Absorption (FFA) during the early phases. Assuming a WR star, with wind velocity $ga 10^3 {rm km s}^{-1}$, as a progenitor, we derive a lower limit to the mass loss rate inferred from the radio data as $dot{M} ga 2.4times10^{-5}$ M$_{odot}$, yr$^{-1}$, which is consistent with the results obtained for other Type Ibc SNe bright at radio frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا