ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical studies of two stripped envelope supernovae SN 2015ap (Type Ib) and SN 2016P (Type Ic)

84   0   0.0 ( 0 )
 نشر من قبل Anjasha Gangopadhyay
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the photometric and spectroscopic studies of a Type Ib SN 2015ap and a Type Ic SN 2016P. SN 2015ap is one of the bright (M$_{V}$ = $-$18.04 mag) Type Ib while SN 2016P lies at an average value among the Type Ic SNe (M$_{V}$ = $-$17.53 mag). Bolometric light curve modelling of SNe 2015ap and 2016P indicates that both the SNe are powered by $^{56}$Ni + magnetar model with $^{56}$Ni masses of 0.01 M$_{odot}$ and 0.002 M$_{odot}$, ejecta masses of 3.75 M$_{odot}$ and 4.66 M$_{odot}$, spin period P$_{0}$ of 25.8 ms and 36.5 ms and magnetic field B$_{p}$ of 28.39 $times$ 10$^{14}$ Gauss and 35.3 $times$ 10$^{14}$ Gauss respectively. The early spectra of SN 2015ap shows prominent lines of He with a W feature due to Fe complexes while other lines of Mg II, Na I and Si II are present in both SNe 2015ap and 2016P. Nebular phase [O I] profile indicates an asymmetric profile in SN 2015ap. The [O I]/[Ca II] ratio and nebular spectral modelling of SN 2015ap hints towards a progenitor mass between 12 $-$ 20 M$_{odot}$.

قيم البحث

اقرأ أيضاً

250 - E. Zapartas 2017
Many young, massive stars are found in close binaries. Using population synthesis simulations we predict the likelihood of a companion star being present when these massive stars end their lives as core-collapse supernovae (SNe). We focus on stripped -envelope SNe, whose progenitors have lost their outer hydrogen and possibly helium layers before explosion. We use these results to interpret new Hubble Space Telescope observations of the site of the broad-lined Type Ic SN 2002ap, 14 years post-explosion. For a subsolar metallicity consistent with SN 2002ap, we expect a main-sequence companion present in about two thirds of all stripped-envelope SNe and a compact companion (likely a stripped helium star or a white dwarf/neutron star/black hole) in about 5% of cases. About a quarter of progenitors are single at explosion (originating from initially single stars, mergers or disrupted systems). All the latter scenarios require a massive progenitor, inconsistent with earlier studies of SN 2002ap. Our new, deeper upper limits exclude the presence of a main-sequence companion star $>8$-$10$ Msun, ruling out about 40% of all stripped-envelope SN channels. The most likely scenario for SN 2002ap includes nonconservative binary interaction of a primary star initially $lesssim 23$ Msun. Although unlikely ($<$1% of the scenarios), we also discuss the possibility of an exotic reverse merger channel for broad-lined Type Ic events. Finally, we explore how our results depend on the metallicity and the model assumptions and discuss how additional searches for companions can constrain the physics that governs the evolution of SN progenitors.
Stripped-envelope supernovae (SE-SNe) show a wide variety of photometric and spectroscopic properties. This is due to the different potential formation channels and the stripping mechanism that allows for a large diversity within the progenitors oute r envelop compositions. Here, the photometric and spectroscopic observations of SN 2020cpg covering $sim 130$ days from the explosion date are presented. SN 2020cpg ($z = 0.037$) is a bright SE-SNe with the $B$-band peaking at $M_{B} = -17.75 pm 0.39$ mag and a maximum pseudo-bolometric luminosity of $L_mathrm{max} = 6.03 pm 0.01 times 10^{42} mathrm{ergs^{-1}}$. Spectroscopically, SN 2020cpg displays a weak high and low velocity H$alpha$ feature during the photospheric phase of its evolution, suggesting that it contained a detached hydrogen envelope prior to explosion. From comparisons with spectral models, the mass of hydrogen within the outer envelope was constrained to be $sim 0.1 mathrm{M}_{odot}$. From the pseudo-bolometric light curve of SN 2020cpg a $^{56}$Ni mass of $M_mathrm{Ni} sim 0.27 pm 0.08$ $mathrm{M}_{odot}$ was determined using an Arnett-like model. The ejecta mass and kinetic energy of SN 2020cpg were determined using an alternative method that compares the light curve of SN 2020cpg and several modelled SE-SNe, resulting in an ejecta mass of $M_mathrm{ejc} sim 5.5 pm 2.0$ $mathrm{M}_{odot}$ and a kinetic energy of $E_mathrm{K} sim 9.0 pm 3.0 times 10^{51} mathrm{erg}$. The ejected mass indicates a progenitor mass of $18 - 25 mathrm{M}_{odot}$. The use of the comparative light curve method provides an alternative process to the commonly used Arnett-like model to determine the physical properties of SE-SNe.
Photometric and spectroscopic analyses of the intermediate-luminosity Type Ib supernova (SN) 2015ap and of the heavily reddened Type Ib SN~2016bau are discussed. Photometric properties of the two SNe, such as colour evolution, bolometric luminosity, photospheric radius, temperature, and velocity evolution, are also constrained. The ejecta mass, synthesised nickel mass, and kinetic energy of the ejecta are calculated from their light-curve analysis. We also model and compare the spectra of SN~2015ap and SN~2016bau at various stages of their evolution. The P~Cygni profiles of various lines present in the spectra are used to determine the velocity evolution of the ejecta. To account for the observed photometric and spectroscopic properties of the two SNe, we have computed 12,$M_odot$ zero-age main sequence (ZAMS) star models and evolved them until the onset of core collapse using the publicly available stellar-evolution code {tt MESA}. Synthetic explosions were produced using the public version of {tt STELLA} and another publicly available code, {tt SNEC}, utilising the {tt MESA} models. {tt SNEC} and {tt STELLA} provide various observable properties such as the bolometric luminosity and velocity evolution. The parameters produced by {tt SNEC}/{tt STELLA} and our observations show close agreement with each other, thus supporting a 12,$M_odot$ ZAMS star as the possible progenitor for SN~2015ap, while the progenitor of SN~2016bau is slightly less massive, being close to the boundary between SN and non-SN as the final product.
Using the Monte Carlo code, SEDONA, multiband photometry and spectra are calculated for supernovae derived from stripped helium stars with presupernova masses from 2.2 to 10.0 $M_odot$. The models are representative of evolution in close binaries and have previously been exploded using a parametrized one-dimensional model for neutrino-transport. A subset, those with presupernova masses in the range 2.2 - 5.6 $M_odot$, have many properties in common with observed Type Ib and Ic supernovae, including a median ejected mass near 2 $M_odot$, explosion energies near $1 times 10^{51}$ erg, typical $^{56}$Ni masses 0.07 - 0.09 $M_odot$, peak times of about 20 days, and a narrow range for the $V$-$R$ color index 10 days post $V$-maximum near 0.3 mag. The median peak bolometric luminosity, near 10$^{42.3}$ erg s$^{-1}$, is fainter, however, than for several observational tabulations and the brightest explosion has a bolometric luminosity of only 10$^{42.50}$ erg s$^{-1}$. The brightest absolute $B$, $V$, and $R$ magnitudes at peak are $-17.2$, $-17.8$, and $-18.0$. These limits are fainter than some allegedly typical Type Ib and Ic supernovae and could reflect problems in our models or the observational analysis. Helium stars with lower and higher masses also produce interesting transients that may have been observed including fast, faint, blue transients and long, red, faint Type Ic supernovae. New models are specifically presented for SN 2007Y, SN 2007gr, SN 2009jf, LSQ13abf, SN 2008D, and SN 2010X.
Optical and near-infrared observations of the Type Ic supernova (SN) 2004aw are presented, obtained from day -3 to day +413 with respect to the B-band maximum. The photometric evolution is characterised by a comparatively slow post-maximum decline of the light curves. The peaks in redder bands are significantly delayed relative to the bluer bands, the I-band maximum occurring 8.4 days later than that in B. With an absolute peak magnitude of -18.02 in the V band the SN can be considered fairly bright, but not exceptional. This also holds for the U through I bolometric light curve, where SN 2004aw has a position intermediate between SNe 2002ap and 1998bw. Spectroscopically SN 2004aw provides a link between a normal Type Ic supernova like SN 1994I and the group of broad-lined SNe Ic. The spectral evolution is rather slow, with a spectrum at day +64 being still predominantly photospheric. The shape of the nebular [O I] 6300,6364 line indicates a highly aspherical explosion. Helium cannot be unambiguously identified in the spectra, even in the near-infrared. Using an analytical description of the light curve peak we find that the total mass of the ejecta in SN 2004aw is 3.5-8.0 M_Sun, significantly larger than in SN 1994I, although not as large as in SN 1998bw. The same model suggests that about 0.3 M_Sun of {56}Ni has been synthesised in the explosion. No connection to a GRB can be firmly established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا