ترغب بنشر مسار تعليمي؟ اضغط هنا

Thresholding Bandit Problem with Both Duels and Pulls

187   0   0.0 ( 0 )
 نشر من قبل Yichong Xu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The Thresholding Bandit Problem (TBP) aims to find the set of arms with mean rewards greater than a given threshold. We consider a new setting of TBP, where in addition to pulling arms, one can also emph{duel} two arms and get the arm with a greater mean. In our motivating application from crowdsourcing, dueling two arms can be more cost-effective and time-efficient than direct pulls. We refer to this problem as TBP with Dueling Choices (TBP-DC). This paper provides an algorithm called Rank-Search (RS) for solving TBP-DC by alternating between ranking and binary search. We prove theoretical guarantees for RS, and also give lower bounds to show the optimality of it. Experiments show that RS outperforms previous baseline algorithms that only use pulls or duels.



قيم البحث

اقرأ أيضاً

We investigate the problem dependent regime in the stochastic Thresholding Bandit problem (TBP) under several shape constraints. In the TBP, the objective of the learner is to output, at the end of a sequential game, the set of arms whose means are a bove a given threshold. The vanilla, unstructured, case is already well studied in the literature. Taking $K$ as the number of arms, we consider the case where (i) the sequence of arms means $(mu_k)_{k=1}^K$ is monotonically increasing (MTBP) and (ii) the case where $(mu_k)_{k=1}^K$ is concave (CTBP). We consider both cases in the problem dependent regime and study the probability of error - i.e. the probability to mis-classify at least one arm. In the fixed budget setting, we provide upper and lower bounds for the probability of error in both the concave and monotone settings, as well as associated algorithms. In both settings the bounds match in the problem dependent regime up to universal constants in the exponential.
137 - Junyu Cao , Wei Sun 2019
Motivated by the phenomenon that companies introduce new products to keep abreast with customers rapidly changing tastes, we consider a novel online learning setting where a profit-maximizing seller needs to learn customers preferences through offeri ng recommendations, which may contain existing products and new products that are launched in the middle of a selling period. We propose a sequential multinomial logit (SMNL) model to characterize customers behavior when product recommendations are presented in tiers. For the offline version with known customers preferences, we propose a polynomial-time algorithm and characterize the properties of the optimal tiered product recommendation. For the online problem, we propose a learning algorithm and quantify its regret bound. Moreover, we extend the setting to incorporate a constraint which ensures every new product is learned to a given accuracy. Our results demonstrate the tier structure can be used to mitigate the risks associated with learning new products.
286 - Junyu Cao , Wei Sun 2019
Motivated by the observation that overexposure to unwanted marketing activities leads to customer dissatisfaction, we consider a setting where a platform offers a sequence of messages to its users and is penalized when users abandon the platform due to marketing fatigue. We propose a novel sequential choice model to capture multiple interactions taking place between the platform and its user: Upon receiving a message, a user decides on one of the three actions: accept the message, skip and receive the next message, or abandon the platform. Based on user feedback, the platform dynamically learns users abandonment distribution and their valuations of messages to determine the length of the sequence and the order of the messages, while maximizing the cumulative payoff over a horizon of length T. We refer to this online learning task as the sequential choice bandit problem. For the offline combinatorial optimization problem, we show that an efficient polynomial-time algorithm exists. For the online problem, we propose an algorithm that balances exploration and exploitation, and characterize its regret bound. Lastly, we demonstrate how to extend the model with user contexts to incorporate personalization.
In this paper, we propose a new multi-armed bandit problem called the Gamblers Ruin Bandit Problem (GRBP). In the GRBP, the learner proceeds in a sequence of rounds, where each round is a Markov Decision Process (MDP) with two actions (arms): a conti nuation action that moves the learner randomly over the state space around the current state; and a terminal action that moves the learner directly into one of the two terminal states (goal and dead-end state). The current round ends when a terminal state is reached, and the learner incurs a positive reward only when the goal state is reached. The objective of the learner is to maximize its long-term reward (expected number of times the goal state is reached), without having any prior knowledge on the state transition probabilities. We first prove a result on the form of the optimal policy for the GRBP. Then, we define the regret of the learner with respect to an omnipotent oracle, which acts optimally in each round, and prove that it increases logarithmically over rounds. We also identify a condition under which the learners regret is bounded. A potential application of the GRBP is optimal medical treatment assignment, in which the continuation action corresponds to a conservative treatment and the terminal action corresponds to a risky treatment such as surgery.
210 - Bingcong Li , Tianyi Chen , 2018
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved th at become available through feedback, and are used to estimate the gradient appearing in the corresponding iterative algorithms. Since the challenging case of feedback with emph{unknown} delays prevents one from constructing the sought gradient estimates, existing MAB and BCO algorithms become intractable. For such challenging setups, delayed exploration, exploitation, and exponential (DEXP3) iterations, along with delayed bandit gradient descent (DBGD) iterations are developed for MAB and BCO, respectively. Leveraging a unified analysis framework, it is established that the regret of DEXP3 and DBGD are ${cal O}big( sqrt{Kbar{d}(T+D)} big)$ and ${cal O}big( sqrt{K(T+D)} big)$, respectively, where $bar{d}$ is the maximum delay and $D$ denotes the delay accumulated over $T$ slots. Numerical tests using both synthetic and real data validate the performance of DEXP3 and DBGD.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا