ترغب بنشر مسار تعليمي؟ اضغط هنا

Hic sunt dracones: Cartography of the Milky Way spiral arms and bar resonances with Gaia Data Release 2

147   0   0.0 ( 0 )
 نشر من قبل Sergey Khoperskov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we introduce a new method for analysing Milky Way phase-space which allows us to reveal the imprint left by the Milky Way bar and spiral arms on the stars with full phase-space data in Gaia Data Release 2. The unprecedented quality and extended spatial coverage of these data enable us to discover six prominent stellar density structures in the disc to a distance of 5 kpc from the Sun. Four of these structures correspond to the spiral arms detected previously in the gas and young stars (Scutum-Centaurus, Sagittarius, Local and Perseus). The remaining two are associated with the main resonances of the Milky Way bar where corotation is placed at around 6.2 kpc and the outer Lindblad resonance beyond the Solar radius, at around 9 kpc. For the first time we provide evidence of the imprint left by spiral arms and resonances in the stellar densities not relying on a specific tracer, through enhancing the signatures left by these asymmetries. Our method offers new avenues for studying how the stellar populations in our Galaxy are shaped.

قيم البحث

اقرأ أيضاً

To illustrate the potential of GDR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-spa ce coordinates, precise parallaxes, and precise Galactic cylindrical velocities . From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from $sim$5~kpc to $sim$13~kpc from the Galactic centre and up to 2~kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars ($r < 200$~pc), with median velocity uncertainties of 0.4~km/s, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. GDR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the $U-V$ plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. (abridged)
83 - Juntai Shen 2020
The Milky Way is a spiral galaxy with the Schechter characteristic luminosity $L_*$, thus an important anchor point of the Hubble sequence of all spiral galaxies. Yet the true appearance of the Milky Way has remained elusive for centuries. We review the current best understanding of the structure and kinematics of our home galaxy, and present an updated scientifically accurate visualization of the Milky Way structure with almost all components of the spiral arms, along with the COBE image in the solar perspective. The Milky Way contains a strong bar, four major spiral arms, and an additional arm segment (the Local arm) that may be longer than previously thought. The Galactic boxy bulge that we observe is mostly the peanut-shaped central bar viewed nearly end-on with a bar angle of 25-30 degrees from the Sun-Galactic center line. The bar transitions smoothly from a central peanut-shaped structure to an extended thin part that ends around R ~ 5 kpc. The Galactic bulge/bar contains ~ 30-40% of the total stellar mass in the Galaxy. Dynamical modelling of both the stellar and gas kinematics yields a bar pattern rotation speed of ~ 35-40 km/s/kpc, corresponding to a bar rotation period of ~ 160-180 Myr. From a galaxy formation point of view, our Milky Way is probably a pure-disk galaxy with little room for a significant merger-made, classical spheroidal bulge, and we give a number of reasons why this is the case.
Context. The physical processes driving the formation of Galactic spiral arms are still under debate. Studies using open clusters favour the description of the Milky Way spiral arms as long-lived structures following the classical density wave theory . Current studies comparing the Gaia DR2 field stars kinematic information of the Solar neighbourhood to simulations, find a better agreement with short-lived arms with a transient behaviour. Aims. Our aim is to provide an observational, data-driven view of the Milky Way spiral structure and its dynamics using open clusters as the main tracers, and to contrast it with simulation-based approaches. We use the most complete catalogue of Milky Way open clusters, with astrometric Gaia EDR3 updated parameters, estimated astrophysical information and radial velocities, to re-visit the nature of the spiral pattern of the Galaxy. Methods. We use a Gaussian mixture model to detect overdensities of open clusters younger than 30 Myr that correspond to the Perseus, Local, Sagittarius and Scutum spiral arms, respectively. We use the birthplaces of the open cluster population younger than 80 Myr to trace the evolution of the different spiral arms and compute their pattern speed. We analyse the age distribution of the open clusters across the spiral arms to explore the differences in the rotational velocity of stars and spiral arms. Results. We are able to increase the range in Galactic azimuth where present-day spiral arms are described, better estimating its parameters by adding 264 young open clusters to the 84 high-mass star-forming regions used so far, thus increasing by a 314% the number of tracers. We use the evolution of the open clusters from their birth positions to find that spiral arms nearly co-rotate with field stars at any given radius, discarding a common spiral pattern speed for the spiral arms explored. [abridged]
The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.8^{+6.7}_{-2.7} x 10^{11} Msun based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.
We present an analysis of the kinematics of 14 satellites of the Milky Way (MW). We use proper motions (PMs) from the $Gaia$ Early Data Release 3 (EDR3) and line-of-sight velocities ($v_{mathrm{los}}$) available in the literature to derive the system ic 3D motion of these systems. For six of them, namely the Carina, Draco, Fornax, Sculptor, Sextans, and Ursa Minor dwarf spheroidal galaxies (dSph), we study the internal kinematics projecting the stellar PMs into radial, $V_R$ (expansion/contraction), and tangential, $V_T$ (rotation), velocity components with respect to the centre of mass. We find significant rotation in the Carina ($|V_T| = 9.6 pm 4.5 {rm{km s^{-1}}}>$), Fornax ($|V_T| = 2.8 pm 1.3 {rm{km s^{-1}}}>$), and Sculptor ($|V_T| = 3.0 pm 1.0 {rm{km s^{-1}}}>$) dSphs. Besides the Sagittarius dSph, these are the first measurements of internal rotation in the plane of the sky in the MWs classical dSphs. All galaxies except Carina show $|V_T| / sigma_v < 1$. We find that slower rotators tend to show, on average, larger sky-projected ellipticity (as expected for a sample with random viewing angles) and are located at smaller Galactocentric distances (as expected for tidal stirring scenarios in which rotation is transformed into random motions as satellites sink into the parent halo). However, these trends are small and not statistically significant, indicating that rotation has not played a dominant role in shaping the 3D structure of these galaxies. Either tidal stirring had a weak impact on the evolution of these systems or it perturbed them with similar efficiency regardless of their current Galactocentric distance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا