ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia Data Release 2: Kinematics of globular clusters and dwarf galaxies around the Milky Way

112   0   0.0 ( 0 )
 نشر من قبل Amina Helmi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.8^{+6.7}_{-2.7} x 10^{11} Msun based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.

قيم البحث

اقرأ أيضاً

To illustrate the potential of GDR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-spa ce coordinates, precise parallaxes, and precise Galactic cylindrical velocities . From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from $sim$5~kpc to $sim$13~kpc from the Galactic centre and up to 2~kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars ($r < 200$~pc), with median velocity uncertainties of 0.4~km/s, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. GDR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the $U-V$ plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. (abridged)
We employ Gaia DR2 proper motions for 151 Milky Way globular clusters from Vasiliev (2019) in tandem with distances and line-of-sight velocities to derive their kinematical properties. To assign clusters to the Milky Way thick disk, bulge, and halo w e follow the approach of Posti et al. (2018) who distinguished among different Galactic stellar components using starss orbits. In particular, we use the ratio $L_{z}/e$, the $Z$ projection of the angular momentum to the eccentricity, as population tracer, which we complement with chemical abundances extracted from the literature and Monte-Carlo simulations. We find that 20 globular clusters belong to the bar/bulge of the Milky Way, 35 exhibit disk properties, and 96 are members of the halo. Moreover, we find that halo globular clusters have close to zero rotational velocity with average value $<Theta>$ =1$pm$ 4 km s$^{-1}$. On the other hand, the sample of clusters that belong to the thick disk possesses a significant rotation with average rotational velocity 179 $pm$ 6 km s$^{-1}$. The twenty globular clusters orbiting within the bar/bulge region of the Milky Way galaxy have average rotational velocity of 49 $pm$ 11 km s$^{-1}$.
We present an analysis of the kinematics of 14 satellites of the Milky Way (MW). We use proper motions (PMs) from the $Gaia$ Early Data Release 3 (EDR3) and line-of-sight velocities ($v_{mathrm{los}}$) available in the literature to derive the system ic 3D motion of these systems. For six of them, namely the Carina, Draco, Fornax, Sculptor, Sextans, and Ursa Minor dwarf spheroidal galaxies (dSph), we study the internal kinematics projecting the stellar PMs into radial, $V_R$ (expansion/contraction), and tangential, $V_T$ (rotation), velocity components with respect to the centre of mass. We find significant rotation in the Carina ($|V_T| = 9.6 pm 4.5 {rm{km s^{-1}}}>$), Fornax ($|V_T| = 2.8 pm 1.3 {rm{km s^{-1}}}>$), and Sculptor ($|V_T| = 3.0 pm 1.0 {rm{km s^{-1}}}>$) dSphs. Besides the Sagittarius dSph, these are the first measurements of internal rotation in the plane of the sky in the MWs classical dSphs. All galaxies except Carina show $|V_T| / sigma_v < 1$. We find that slower rotators tend to show, on average, larger sky-projected ellipticity (as expected for a sample with random viewing angles) and are located at smaller Galactocentric distances (as expected for tidal stirring scenarios in which rotation is transformed into random motions as satellites sink into the parent halo). However, these trends are small and not statistically significant, indicating that rotation has not played a dominant role in shaping the 3D structure of these galaxies. Either tidal stirring had a weak impact on the evolution of these systems or it perturbed them with similar efficiency regardless of their current Galactocentric distance.
This study constitutes part of a larger effort aimed at better characterizing the Galactic globular clusters (GGCs) located towards the inner Milky Way bulge and disk. Here, we focus on internal kinematics of nine GGCs, obtained from space-based imag ing over time baselines of $>$9 years. We exploit multiple avenues to assess the dynamical state of the target GGCs, constructing radial profiles of projected stellar density, proper motion dispersion, and anisotropy. We posit that two-thirds (6/9) of our target GGCs are in an advanced dynamical state, and are close to (or have recently undergone) core collapse, supported by at least two lines of evidence: First, we find relatively steep proper motion dispersion profiles, in accord with literature values for core-collapsed GGCs. Second, we find that our sample is, in the mean, isotropic even out to their half-light radii, although one of our target clusters (NGC 6380) is tangentially anisotropic at $>$1$sigma$ beyond its half-light radius, in accord with theoretical predictions for clusters evolving in strong tidal fields. Our proper motion dispersion and anisotropy profiles are made publicly available.
In this paper we introduce a new method for analysing Milky Way phase-space which allows us to reveal the imprint left by the Milky Way bar and spiral arms on the stars with full phase-space data in Gaia Data Release 2. The unprecedented quality and extended spatial coverage of these data enable us to discover six prominent stellar density structures in the disc to a distance of 5 kpc from the Sun. Four of these structures correspond to the spiral arms detected previously in the gas and young stars (Scutum-Centaurus, Sagittarius, Local and Perseus). The remaining two are associated with the main resonances of the Milky Way bar where corotation is placed at around 6.2 kpc and the outer Lindblad resonance beyond the Solar radius, at around 9 kpc. For the first time we provide evidence of the imprint left by spiral arms and resonances in the stellar densities not relying on a specific tracer, through enhancing the signatures left by these asymmetries. Our method offers new avenues for studying how the stellar populations in our Galaxy are shaped.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا