ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Program Synthesis By Self-Learning

73   0   0.0 ( 0 )
 نشر من قبل Yifan Xu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural inductive program synthesis is a task generating instructions that can produce desired outputs from given inputs. In this paper, we focus on the generation of a chunk of assembly code that can be executed to match a state change inside the CPU and RAM. We develop a neural program synthesis algorithm, AutoAssemblet, learned via self-learning reinforcement learning that explores the large code space efficiently. Policy networks and value networks are learned to reduce the breadth and depth of the Monte Carlo Tree Search, resulting in better synthesis performance. We also propose an effective multi-entropy policy sampling technique to alleviate online update correlations. We apply AutoAssemblet to basic programming tasks and show significant higher success rates compared to several competing baselines.



قيم البحث

اقرأ أيضاً

The goal of program synthesis from examples is to find a computer program that is consistent with a given set of input-output examples. Most learning-based approaches try to find a program that satisfies all examples at once. Our work, by contrast, c onsiders an approach that breaks the problem into two stages: (a) find programs that satisfy only one example, and (b) leverage these per-example solutions to yield a program that satisfies all examples. We introduce the Cross Aggregator neural network module based on a multi-head attention mechanism that learns to combine the cues present in these per-example solutions to synthesize a global solution. Evaluation across programs of different lengths and under two different experimental settings reveal that when given the same time budget, our technique significantly improves the success rate over PCCoder arXiv:1809.04682v2 [cs.LG] and other ablation baselines. The code, data and trained models for our work can be found at https://github.com/shrivastavadisha/N-PEPS.
The goal of program synthesis is to automatically generate programs in a particular language from corresponding specifications, e.g. input-output behavior. Many current approaches achieve impressive results after training on randomly generated I/O ex amples in limited domain-specific languages (DSLs), as with string transformations in RobustFill. However, we empirically discover that applying test input generation techniques for languages with control flow and rich input space causes deep networks to generalize poorly to certain data distributions; to correct this, we propose a new methodology for controlling and evaluating the bias of synthetic data distributions over both programs and specifications. We demonstrate, using the Karel DSL and a small Calculator DSL, that training deep networks on these distributions leads to improved cross-distribution generalization performance.
We convert the DeepMind Mathematics Dataset into a reinforcement learning environment by interpreting it as a program synthesis problem. Each action taken in the environment adds an operator or an input into a discrete compute graph. Graphs which com pute correct answers yield positive reward, enabling the optimization of a policy to construct compute graphs conditioned on problem statements. Baseline models are trained using Double DQN on various subsets of problem types, demonstrating the capability to learn to correctly construct graphs despite the challenges of combinatorial explosion and noisy rewards.
Program synthesis from input-output examples has been a long-standing challenge, and recent works have demonstrated some success in designing deep neural networks for program synthesis. However, existing efforts in input-output neural program synthes is have been focusing on domain-specific languages, thus the applicability of previous approaches to synthesize code in full-fledged popular programming languages, such as C, remains a question. The main challenges lie in two folds. On the one hand, the program search space grows exponentially when the syntax and semantics of the programming language become more complex, which poses higher requirements on the synthesis algorithm. On the other hand, increasing the complexity of the programming language also imposes more difficulties on data collection, since building a large-scale training set for input-output program synthesis require random program generators to sample programs and input-output examples. In this work, we take the first step to synthesize C programs from input-output examples. In particular, we propose LaSynth, which learns the latent representation to approximate the execution of partially generated programs, even if their semantics are not well-defined. We demonstrate the possibility of synthesizing elementary C code from input-output examples, and leveraging learned execution significantly improves the prediction performance over existing approaches. Meanwhile, compared to the randomly generated ground-truth programs, LaSynth synthesizes more concise programs that resemble human-written code. We show that training on these synthesized programs further improves the prediction performance for both Karel and C program synthesis, indicating the promise of leveraging the learned program synthesizer to improve the dataset quality for input-output program synthesis.
We present a neurosymbolic framework for the lifelong learning of algorithmic tasks that mix perception and procedural reasoning. Reusing high-level concepts across domains and learning complex procedures are key challenges in lifelong learning. We s how that a program synthesis approach that combines gradient descent with combinatorial search over programs can be a more effective response to these challenges than purely neural methods. Our framework, called HOUDINI, represents neural networks as strongly typed, differentiable functional programs that use symbolic higher-order combinators to compose a library of neural functions. Our learning algorithm consists of: (1) a symbolic program synthesizer that performs a type-directed search over parameterized programs, and decides on the library functions to reuse, and the architectures to combine them, while learning a sequence of tasks; and (2) a neural module that trains these programs using stochastic gradient descent. We evaluate HOUDINI on three benchmarks that combine perception with the algorithmic tasks of counting, summing, and shortest-path computation. Our experiments show that HOUDINI transfers high-level concepts more effectively than traditional transfer learning and progressive neural networks, and that the typed representation of networks significantly accelerates the search.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا