ﻻ يوجد ملخص باللغة العربية
For over twenty years, the term cosmic web has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural-engineering or textile spiderwebs is even deeper than previously known, and extends to origami tessellations as well. Here we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.
The cosmic web (the arrangement of matter in the universe), spiders webs, and origami tessellations are linked by their geometry (specifically, of sectional-Voronoi tessellations). This motivates origami and textile artistic representations of the co
Given a flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on a region of the plane) with a mountain-valley (MV) assignment $mu:Eto{-1,1}$ indicating which creases in $E$ bend convexly (mountain) or concavely (v
Structures like galaxies and filaments of galaxies in the Universe come about from the origami-like folding of an initially flat three-dimensional manifold in 6D phase space. The ORIGAMI method identifies these structures in a cosmological simulation
Using a mathematical model for self-foldability of rigid origami, we determine which monohedral quadrilateral tilings of the plane are uniquely self-foldable. In particular, the Miura-ori and Chicken Wire patterns are not self-foldable under our defi
Cosmic strings are generically predicted in many extensions of the Standard Model of particle physics. We propose a new avenue for detecting cosmic strings through their effect on the filamentary structure in the cosmic web. Using cosmological simula