ﻻ يوجد ملخص باللغة العربية
Ultra-wide-band-gap group-III nitrides are of interest for applications in deep-ultraviolet optoelectronics and power electronics. Such devices must be able to efficiently dissipate heat generated from their operation, making the thermal conductivity of the constituent materials an important parameter for high-power applications. We have investigated the phonon-limited thermal conductivity of AlN, GaN, and Al$_x$Ga$_{1-x}$N using first-principles calculations, with a focus on the effects of compositional and isotopic disorder. Our Boltzmann-transport-equation calculations show that the maximum thermal conductivity for AlN (GaN) is 348 W m$^{-1}$ K$^{-1}$ (235 W m$^{-1}$ K$^{-1}$) for with pure $^{14}$N, and 292 W m$^{-1}$ K$^{-1}$ for GaN with pure $^{71}$Ga. Al$_x$Ga$_{1-x}$N alloys reach a minimum thermal conductivity at Al mole fractions of x = 0.60 to 0.71 over the 100-1000K temperature range. Our results provide understanding on the effects of isotope disorder on the thermal conductivity of AlN and GaN. We also present an analytical model for the evaluation of the thermal conductivity of Al$_x$Ga$_{1-x}$N alloys for arbitrary composition and temperature, which can be applied for the thermal design of AlGaN-based electronic and optoelectronic devices.
The unprecedented wide bandgap tunability (~1 eV) of Al$_x$In$_{1-x}$As$_y$Sb$_{1-y}$ latticed-matched to GaSb enables the fabrication of photodetectors over a wide range from near-infrared to mid-infrared. In this paper, the valence band-offsets in
We study the low-temperature electrical and thermal conductivity of CoSi and Co$_{1-x}$M$_x$Si alloys (M = Fe, Ni; $x leq$ 0.06). Measurements show that the low-temperature electrical conductivity of Co$_{1-x}$Fe$_{x}$Si alloys decreases at $x > $ 0.
Heterostructures consisting of alternating GaN/AlN epitaxial layers represent the building-blocks of state-of-the-art devices employed for active cooling and energy-saving lightning. Insights into the heat conduction of these structures are essential
A five-level {Pp} model of the band structure for GaAs-type semiconductors is used to describe the spin $g^*$-factor and the cyclotron mass $m^*_c$ of conduction electrons in GaAs/Ga$_{1-x}$Al$_x$As quantum wells in an external magnetic field paralle
The finite-temperature magnetic properties of Fe$_x$Pd$_{1-x}$ and Co$_x$Pt$_{1-x}$ alloys have been investigated. It is shown that the temperature-dependent magnetic behaviour of alloys, composed of originally magnetic and non-magnetic elements, can