ﻻ يوجد ملخص باللغة العربية
Integrating patterned, low-loss magnetic materials into microwave devices and circuits presents many challenges due to the specific conditions that are required to grow ferrite materials, driving the need for flip-chip and other indirect fabrication techniques. The low-loss ($alpha = 3.98 pm 0.22 times 10^{-5}$), room-temperature ferrimagnetic coordination compound vanadium tetracyanoethylene ($mathrm{V[TCNE]}_x$) is a promising new material for these applications that is potentially compatible with semiconductor processing. Here we present the deposition, patterning, and characterization of $mathrm{V[TCNE]}_x$ thin films with lateral dimensions ranging from 1 micron to several millimeters. We employ electron-beam lithography and liftoff using an aluminum encapsulated poly(methyl methacrylate), poly(methyl methacrylate-methacrylic acid) copolymer bilayer (PMMA/P(MMA-MAA)) on sapphire and silicon. This process can be trivially extended to other common semiconductor substrates. Films patterned via this method maintain low-loss characteristics down to 25 microns with only a factor of 2 increase down to 5 microns. A rich structure of thickness and radially confined spin-wave modes reveals the quality of the patterned films. Further fitting, simulation, and analytic analysis provides an exchange stiffness, $A_{ex} = 2.2 pm 0.5 times 10^{-10}$ erg/cm, as well as insights into the mode character and surface spin pinning. Below a micron, the deposition is non-conformal, which leads to interesting and potentially useful changes in morphology. This work establishes the versatility of $mathrm{V[TCNE]}_x$ for applications requiring highly coherent magnetic excitations ranging from microwave communication to quantum information.
Ferromagnetic resonance (FMR) was used to investigate the static and dynamic magnetic properties of carbon-doped Mn5Ge3 (C$_{0.1}$ and C$_{0.2}$) thin films grown on Ge(111). The temperature dependence of magnetic anisotropy shows an increased perpen
The resonant coupling of phonons and magnons is important for the interconversion of phononic and spin degrees of freedom. We studied the phonon transmission in LiNbO3 manipulated by the dynamic magnetization in a Ni thin film. It was observed that t
We present a comprehensive study of internal quality factors in superconducting stub-geometry 3-dimensional cavities made of aluminum. We use wet etching, annealing and electrochemichal polishing to improve the as machined quality factor. We find tha
We report on broadband ferromagnetic resonance linewidth measurements performed on epitaxial Heusler thin films. A large and anisotropic two-magnon scattering linewidth broadening is observed for measurements with the magnetization lying in the film
Voltage-induced ferromagnetic resonance (V-FMR) in magnetic tunnel junctions (MTJs) with a W buffer is investigated. Perpendicular magnetic anisotropy (PMA) energy is controlled by both thickness of a CoFeB free layer deposited directly on the W buff