ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetic resonance and magnetic damping in C-doped Mn5Ge3

77   0   0.0 ( 0 )
 نشر من قبل Voicu Dolocan O.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ferromagnetic resonance (FMR) was used to investigate the static and dynamic magnetic properties of carbon-doped Mn5Ge3 (C$_{0.1}$ and C$_{0.2}$) thin films grown on Ge(111). The temperature dependence of magnetic anisotropy shows an increased perpendicular magneto-crystalline contribution at 80K with an in-plane easy axis due to the large shape contribution. We find that our samples show a small FMR linewidth (corresponding to an intrinsic magnetic damping parameter $alpha$=0.005), which is a measure of the spin relaxation and directly related with the magnetic and structural quality of the material. In the perpendicular-to-plane geometry, the FMR linewidth shows a minimum at around 200K for all the samples, which seems to be not correlated to the C-doping. The magnetic relaxation parameters have been determined and indicate the two-magnon scattering as the main extrinsic contribution. We observe a change in the main contribution from scattering centres in Mn5Ge3C0.2 at low temperatures, which could be related to the minimum in linewidth.



قيم البحث

اقرأ أيضاً

Understanding the multiferroic coupling is one of the key issues in the feld of multiferroics. As shown here theoretically, the ferromagnetic resonance (FMR) renders possible an access to the magnetoelectric coupling coefficient in composite multifer roics. This we evidence by a detailed analysis and numerical calculations of FMR in an unstrained chain of BaTiO3 in the tetragonal phase in contact with Fe, including the effect of depolarizing field. The spectra of the absorbed power in FMR are found to be sensitive to the orientation of the interface electric polarization and to an applied static electric field. Here we propose a method for measuring the magnetoelectric coupling coefficient by means of FMR.
The magnetization characteristic in a permalloy thin strip is investigated by electrically measuring the anisotropic magnetoresistance and ferromagnetic resonance in in-plane and out-of-plane configurations. Our results indicate that the magnetizatio n vector can rotate in the film plane as well as out of the film plane by changing the intensity of external magnetic field of certain direction. The magnetization characteristic can be explained by considering demagnetization and magnetic anisotropy. Our method can be used to obtain the demagnetization factor, saturated magnetic moment and the magnetic anisotropy.
The radio-frequency (RF) voltage amplification property of a tunnel magnetoresistance device driven by an RF external-magnetic-field-induced ferromagnetic resonance was studied. The proposed device consists of a magnetic tunnel junction (MTJ) and an electrically isolated coplanar waveguide. The input RF voltage applied to the waveguide can excite the resonant dynamics in the free layer magnetization, leading to the generation of an output RF voltage under a DC bias current. The dependences of the RF voltage gain on the static external magnetic field strength and angle were systematically investigated. The design principles for the enhancement of the gain factor are also discussed.
A dipper probe for broadband Ferromagnetic Resonance (FMR) operating from 4.2 K to room temperature is described. The apparatus is based on a 2-port transmitted microwave signal measurement with a grounded coplanar waveguide. The waveguide generates a microwave field and records the sample response. A 3-stage dipper design is adopted for fast and stable temperature control. The temperature variation due to FMR is in the milli-Kelvin range at liquid helium temperature. We also designed a novel FMR probe head with a spring-loaded sample holder. Improved signal-to-noise ratio and stability compared to a common FMR head are achieved. Using a superconducting vector magnet we demonstrate Gilbert damping measurements on two thin film samples using a vector network analyzer with frequency up to 26 GHz: 1) A Permalloy film of 5 nm thickness and 2) a CoFeB film of 1.5 nm thickness. Experiments were performed with the applied magnetic field parallel and perpendicular to the film plane.
The broadband ferromagnetic resonance measurement using the rectifying effect of Ni81Fe19 wire has been investigated. One wire is deposited on the center strip line of the coplanar waveguide (CPW) and the other one deposited between two strip lines o f CPW. The method is based on the detection of the magnetoresistance oscillation due to the magnetization dynamics induced by the radio frequency field. The magnetic field dependences of the resonance frequency and the rectification spectrum are presented and analytically interpreted on the standpoint of a uniform magnetization precession model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا