ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for light mediators in the low-energy data of the CONNIE reactor neutrino experiment

125   0   0.0 ( 0 )
 نشر من قبل Brenda Aurea Cervantes Vergara
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CONNIE experiment is located at a distance of 30 m from the core of a commercial nuclear reactor, and has collected a 3.7 kg-day exposure using a CCD detector array sensitive to an $sim$1 keV threshold for the study of coherent neutrino-nucleus elastic scattering. Here we demonstrate the potential of this low-energy neutrino experiment as a probe for physics Beyond the Standard Model, by using the recently published results to constrain two simplified extensions of the Standard Model with light mediators. We compare the new limits with those obtained for the same models using neutrinos from the Spallation Neutron Source. Our new constraints represent the best limits for these simplified models among the experiments searching for CE$ u$NS for a light vector mediator with mass $M_{Z^{prime}}<$ 10 MeV, and for a light scalar mediator with mass $M_{phi}<$ 30 MeV. These results constitute the first use of the CONNIE data as a probe for physics Beyond the Standard Model.



قيم البحث

اقرأ أيضاً

The STEREO experiment is a very short baseline reactor antineutrino experiment. It is designed to test the hypothesis of light sterile neutrinos being the cause of a deficit of the observed antineutrino interaction rate at short baselines with respec t to the predicted rate, known as the reactor antineutrino anomaly. The STEREO experiment measures the antineutrino energy spectrum in six identical detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this article, results from 179 days of reactor turned on and 235 days of reactor turned off are reported at a high degree of detail. The current results include improvements in the modelling of detector optical properties and the gamma-cascade after neutron captures by gadolinium, the treatment of backgrounds, and the statistical method of the oscillation analysis. Using a direct comparison between antineutrino spectra of all cells, largely independent of any flux prediction, we find the data compatible with the null oscillation hypothesis. The best-fit point of the reactor antineutrino anomaly is rejected at more than 99.9% C.L.
120 - David E. Jaffe 2021
With the end of Daya Bay experimental operations in December 2020, I review the history, discoveries, measurements and impact of the Daya Bay reactor neutrino experiment in China.
This presentation describes a measurement of the neutrino mixing parameter, sin^2(2theta_13), from the Daya Bay Reactor Neutrino Experiment. Disappearance of electron antineutrinos at a distance of ~2 km from a set of six reactors, where the reactor flux is constrained by near detectors, has been clearly observed. The result, based on the ratio of observed to expected rate of antineutrinos, using 139 days of data taken between December 24, 2011 and May 11, 2012, is sin^2(2theta_13) = 0.089 +/- 0.010(stat.) +/- 0.005(syst.). Improvements in sensitivity from inclusion of additional data, spectral analysis, and improved calibration are expected in the future.
The experiment Neutrino-4 had started in 2014 with a detector model and then was continued with a full-scale detector in 2016 - 2021. In this article we describe all steps of preparatory work on this experiment. We present all results of the Neutrino -4 experiment with increased statistical accuracy provided to date. The experimental setup is constructed to measure the flux and spectrum of the reactor antineutrinos as a function of distance to the center of the active zone of the SM-3 reactor (Dimitrovgrad, Russia) in the range of 6 - 12 meters. Using all the collected data, we performed a model-independent analysis to determine the oscillation parameters $Delta m_{14}^2$ and $sin^22theta_{14}$. The method of coherent summation of measurement results allows to directly demonstrate the oscillation effect. We present the analysis of possible systematic errors and the MC model of the experiment, which considers the possibility of the effect manifestation at the present precision level. As a result of the analysis, we can conclude that at currently available statistical accuracy we observe the oscillations at the $2.9sigma$ level with parameters $Delta m_{14}^2=(7.3pm0.13_{st}pm1.16_{sys})text{eV}^2 = (7.3pm1.17)text{eV}^2$ and $sin^22theta_{14}= 0.36pm0.12_{stat}(2.9sigma)$. Monte Carlo based statistical analysis gave estimation of confidence level at $2.7sigma$. We plan to improve the currently working experimental setup and create a completely new setup in order to increase the accuracy of the experiment by 3 times. We also provide a brief analysis of the general experimental situation in the search for sterile neutrinos.
We present the results of the Neutrino-4 experiment on search for a sterile neutrino. The experiment has been carried out on the SM-3 reactor having a compact active zone of $42times42times35textrm{cm}^3$ and operating on the highly enriched uranium- 235 at 90 MW thermal power. We report the results of the Neutrino-4 experiment of measurements of reactor antineutrino flux and spectrum dependence on the distance in the range 6-12 meters from the center of the reactor core. Using the measured spectrum and the distance dependence of antineutrino flux, we performed the model independent analysis of restrictions on the oscillation parameters $Delta m^2_{14}$ and $sin^2 2theta_{14}$. The method of coherent addition of results of measurements is proposed. It allows us to directly observe the effect of oscillations. We observed the oscillation effect at CL $3.5sigma$ in the vicinity of $Delta m^2_{14} approx 7.26textrm{eV}^2$ and $sin^2 2theta_{14} approx 0.38$. Combining the result of the Neutrino-4 experiment and the result of the gallium anomaly effect we obtained value $sin^2 2theta_{14} approx 0.35 pm 0.07 (5sigma)$. The analysis of systematics effects is presented. Comparison with results of other experiments is presented. Future prospect of the experiment is discussed. It is necessary to notice that obtained values $sin^2 2theta_{14} approx 0.35 pm 0.07 (5sigma)$ and $Delta m^2_{14} approx (7.3 pm 0.7)textrm{eV}^2$ allow make assessment on the mass of a neutrino: $m_{beta} approx 0.8textrm{eV}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا