ﻻ يوجد ملخص باللغة العربية
We present the results of the Neutrino-4 experiment on search for a sterile neutrino. The experiment has been carried out on the SM-3 reactor having a compact active zone of $42times42times35textrm{cm}^3$ and operating on the highly enriched uranium-235 at 90 MW thermal power. We report the results of the Neutrino-4 experiment of measurements of reactor antineutrino flux and spectrum dependence on the distance in the range 6-12 meters from the center of the reactor core. Using the measured spectrum and the distance dependence of antineutrino flux, we performed the model independent analysis of restrictions on the oscillation parameters $Delta m^2_{14}$ and $sin^2 2theta_{14}$. The method of coherent addition of results of measurements is proposed. It allows us to directly observe the effect of oscillations. We observed the oscillation effect at CL $3.5sigma$ in the vicinity of $Delta m^2_{14} approx 7.26textrm{eV}^2$ and $sin^2 2theta_{14} approx 0.38$. Combining the result of the Neutrino-4 experiment and the result of the gallium anomaly effect we obtained value $sin^2 2theta_{14} approx 0.35 pm 0.07 (5sigma)$. The analysis of systematics effects is presented. Comparison with results of other experiments is presented. Future prospect of the experiment is discussed. It is necessary to notice that obtained values $sin^2 2theta_{14} approx 0.35 pm 0.07 (5sigma)$ and $Delta m^2_{14} approx (7.3 pm 0.7)textrm{eV}^2$ allow make assessment on the mass of a neutrino: $m_{beta} approx 0.8textrm{eV}$.
The experiment Neutrino-4 had started in 2014 with a detector model and then was continued with a full-scale detector in 2016 - 2021. In this article we describe all steps of preparatory work on this experiment. We present all results of the Neutrino
An experiment to search for light sterile neutrinos was conducted at a reactor with a thermal power of 2.8 GW located at the Hanbit nuclear power complex. The search was done with a detector consisting of a ton of Gd-loaded liquid scintillator in a t
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. A moveable detector, protected with pa
We comment on the claimed observation [arXiv:arXiv:2005.05301] of sterile neutrino oscillations by the Neutrino-4 collaboration. Such a claim, which requires the existence of a new fundamental particle, demands a level of rigor commensurate with its
The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNEs sensitivity to observe charge-parity violation (CPV) in the neutrino sect