ﻻ يوجد ملخص باللغة العربية
This paper considers the low-observability state estimation problem in power distribution networks and develops a decentralized state estimation algorithm leveraging the matrix completion methodology. Matrix completion has been shown to be an effective technique in state estimation that exploits the low dimensionality of the power system measurements to recover missing information. This technique can utilize an approximate (linear) load flow model, or it can be used with no physical models in a network where no information about the topology or line admittance is available. The direct application of matrix completion algorithms requires solving a semi-definite programming (SDP) problem, which becomes infeasible for large networks. We therefore develop a decentralized algorithm that capitalizes on the popular proximal alternating direction method of multipliers (proximal ADMM). The method allows us to distribute the computation among different areas of the network, thus leading to a scalable algorithm. By doing all computations at individual control areas and only communicating with neighboring areas, the algorithm eliminates the need for data to be sent to a central processing unit and thus increases efficiency and contributes to the goal of autonomous control of distribution networks. We illustrate the advantages of the proposed algorithm numerically using standard IEEE test cases.
We propose a framework for integrating optimal power flow (OPF) with state estimation (SE) in the loop for distribution networks. Our approach combines a primal-dual gradient-based OPF solver with a SE feedback loop based on a limited set of sensors
This paper examines the problem of state estimation in power distribution systems under low-observability conditions. The recently proposed constrained matrix completion method which combines the standard matrix completion method and power flow const
The tremendous bandwidth available in the millimeter wave (mmW) frequencies between 30 and 300 GHz have made these bands an attractive candidate for next-generation cellular systems. However, reliable communication at these frequencies depends extens
This paper considers the problem of simultaneous estimation of the attitude, position and linear velocity for vehicles navigating in a three-dimensional space. We propose two types of hybrid nonlinear observers using continuous angular velocity and l
The low-rank matrix completion problem can be solved by Riemannian optimization on a fixed-rank manifold. However, a drawback of the known approaches is that the rank parameter has to be fixed a priori. In this paper, we consider the optimization pro