ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Rank Spatial Channel Estimation for Millimeter Wave Cellular Systems

160   0   0.0 ( 0 )
 نشر من قبل Sundeep Rangan
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The tremendous bandwidth available in the millimeter wave (mmW) frequencies between 30 and 300 GHz have made these bands an attractive candidate for next-generation cellular systems. However, reliable communication at these frequencies depends extensively on beamforming with very high-dimensional antenna arrays. Estimating the channel sufficiently accurately to perform beamforming can thus be challenging both due to low coherence time and large number of antennas. Also, the measurements used for channel estimation may need to be made with analog beamforming where the receiver can look in only direction at a time. This work presents a novel method for estimation of the receive-side spatial covariance matrix of a channel from a sequence of power measurements made at different angular directions. The method reduces the spatial covariance estimation to a matrix completion optimization problem. To reduce the number of measurements, the optimization can incorporate the low-rank constraints in the channels that are typical in the mmW setting. The optimization is convex and fast, iterative methods are presented to solving the problem. Simulations are presented for both single and multi-path channels using channel models derived from real measurements in New York City at 28 GHz.



قيم البحث

اقرأ أيضاً

We consider channel/subspace tracking systems for temporally correlated millimeter wave (e.g., E-band) multiple-input multiple-output (MIMO) channels. Our focus is given to the tracking algorithm in the non-line-of-sight (NLoS) environment, where the transmitter and the receiver are equipped with hybrid analog/digital precoder and combiner, respectively. In the absence of straightforward time-correlated channel model in the millimeter wave MIMO literature, we present a temporal MIMO channel evolution model for NLoS millimeter wave scenarios. Considering that conventional MIMO channel tracking algorithms in microwave bands are not directly applicable, we propose a new channel tracking technique based on sequentially updating the precoder and combiner. Numerical results demonstrate the superior channel tracking ability of the proposed technique over independent sounding approach in the presented channel model and the spatial channel model (SCM) adopted in 3GPP specification.
Fast channel estimation in millimeter-wave (mmWave) systems is a fundamental enabler of high-gain beamforming, which boosts coverage and capacity. The channel estimation stage typically involves an initial beam training process where a subset of the possible beam directions at the transmitter and receiver is scanned along a predefined codebook. Unfortunately, the high number of transmit and receive antennas deployed in mmWave systems increase the complexity of the beam selection and channel estimation tasks. In this work, we tackle the channel estimation problem in analog systems from a different perspective than used by previous works. In particular, we propose to move the channel estimation problem from the angular domain into the transformed spatial domain, in which estimating the angles of arrivals and departures corresponds to estimating the angular frequencies of paths constituting the mmWave channel. The proposed approach, referred to as transformed spatial domain channel estimation (TSDCE) algorithm, exhibits robustness to additive white Gaussian noise by combining low-rank approximations and sample autocorrelation functions for each path in the transformed spatial domain. Numerical results evaluate the mean square error of the channel estimation and the direction of arrival estimation capability. TSDCE significantly reduces the first, while exhibiting a remarkably low computational complexity compared with well-known benchmarking schemes.
Millimeter-wave massive MIMO with lens antenna array can considerably reduce the number of required radio-frequency (RF) chains by beam selection. However, beam selection requires the base station to acquire the accurate information of beamspace chan nel. This is a challenging task, as the size of beamspace channel is large while the number of RF chains is limited. In this paper, we investigate the beamspace channel estimation problem in mmWave massive MIMO systems with lens antenna array. Specifically, we first design an adaptive selecting network for mmWave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beamspace channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of mmWave beamspace channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beamspace channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy, even in the low SNR region as the structural characteristics of beamspace channel can be exploited.
Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront the intrinsic characteristics of mmWave signal propagation. However, the small coherence time in mmWave systems, especially under mobility conditions, renders efficient Beam Management (BM) in standalone mmWave communication a very difficult task. In this paper, we consider HBF transceivers with planar antenna panels and design a multi-level beam codebook for the analog beamformer comprising flat top beams with variable widths. These beams exhibit an almost constant array gain for the whole desired angle width, thereby facilitating efficient hierarchical BM. Focusing on the uplink communication, we present a novel beam training algorithm with dynamic beam ordering, which is suitable for the stringent latency requirements of the latest mmWave standard discussions. Our simulation results showcase the latency performance improvement and received signal-to-noise ratio with different variations of the proposed scheme over the optimum beam training scheme based on exhaustive narrow beam search.
79 - Simin Xu , Nan Yang , Biao He 2019
We propose a novel analytical framework for evaluating the coverage performance of a millimeter wave (mmWave) cellular network where idle user equipments (UEs) act as relays. In this network, the base station (BS) adopts either the direct mode to tra nsmit to the destination UE, or the relay mode if the direct mode fails, where the BS transmits to the relay UE and then the relay UE transmits to the destination UE. To address the drastic rotational movements of destination UEs in practice, we propose to adopt selection combining at destination UEs. New expression is derived for the signal-to-interference-plus-noise ratio (SINR) coverage probability of the network. Using numerical results, we first demonstrate the accuracy of our new expression. Then we show that ignoring spatial correlation, which has been commonly adopted in the literature, leads to severe overestimation of the SINR coverage probability. Furthermore, we show that introducing relays into a mmWave cellular network vastly improves the coverage performance. In addition, we show that the optimal BS density maximizing the SINR coverage probability can be determined by using our analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا