ترغب بنشر مسار تعليمي؟ اضغط هنا

Unaligned Image-to-Sequence Transformation with Loop Consistency

57   0   0.0 ( 0 )
 نشر من قبل Kwonjoon Lee
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We tackle the problem of modeling sequential visual phenomena. Given examples of a phenomena that can be divided into discrete time steps, we aim to take an input from any such time and realize this input at all other time steps in the sequence. Furthermore, we aim to do this without ground-truth aligned sequences -- avoiding the difficulties needed for gathering aligned data. This generalizes the unpaired image-to-image problem from generating pairs to generating sequences. We extend cycle consistency to loop consistency and alleviate difficulties associated with learning in the resulting long chains of computation. We show competitive results compared to existing image-to-image techniques when modeling several different data sets including the Earths seasons and aging of human faces.



قيم البحث

اقرأ أيضاً

Image translation across different domains has attracted much attention in both machine learning and computer vision communities. Taking the translation from source domain $mathcal{D}_s$ to target domain $mathcal{D}_t$ as an example, existing algorit hms mainly rely on two kinds of loss for training: One is the discrimination loss, which is used to differentiate images generated by the models and natural images; the other is the reconstruction loss, which measures the difference between an original image and the reconstructed version through $mathcal{D}_stomathcal{D}_ttomathcal{D}_s$ translation. In this work, we introduce a new kind of loss, multi-path consistency loss, which evaluates the differences between direct translation $mathcal{D}_stomathcal{D}_t$ and indirect translation $mathcal{D}_stomathcal{D}_atomathcal{D}_t$ with $mathcal{D}_a$ as an auxiliary domain, to regularize training. For multi-domain translation (at least, three) which focuses on building translation models between any two domains, at each training iteration, we randomly select three domains, set them respectively as the source, auxiliary and target domains, build the multi-path consistency loss and optimize the network. For two-domain translation, we need to introduce an additional auxiliary domain and construct the multi-path consistency loss. We conduct various experiments to demonstrate the effectiveness of our proposed methods, including face-to-face translation, paint-to-photo translation, and de-raining/de-noising translation.
167 - Yihao Zhao , Ruihai Wu , Hao Dong 2020
Unpaired image-to-image translation is a class of vision problems whose goal is to find the mapping between different image domains using unpaired training data. Cycle-consistency loss is a widely used constraint for such problems. However, due to th e strict pixel-level constraint, it cannot perform geometric changes, remove large objects, or ignore irrelevant texture. In this paper, we propose a novel adversarial-consistency loss for image-to-image translation. This loss does not require the translated image to be translated back to be a specific source image but can encourage the translated images to retain important features of the source images and overcome the drawbacks of cycle-consistency loss noted above. Our method achieves state-of-the-art results on three challenging tasks: glasses removal, male-to-female translation, and selfie-to-anime translation.
Existing image-to-image transformation approaches primarily focus on synthesizing visually pleasing data. Generating images with correct identity labels is challenging yet much less explored. It is even more challenging to deal with image transformat ion tasks with large deformation in poses, viewpoints, or scales while preserving the identity, such as face rotation and object viewpoint morphing. In this paper, we aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image, which can thereby benefit the subsequent fine-grained image recognition and few-shot learning tasks. The generated images, transformed with large geometric deformation, do not necessarily need to be of high visual quality but are required to maintain as much identity information as possible. To this end, we adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image. In order to preserve the fine-grained contextual details of the input image during the deformable transformation, a constrained nonalignment connection method is proposed to construct learnable highways between intermediate convolution blocks in the generator. Moreover, an adaptive identity modulation mechanism is proposed to transfer the identity information into the output image effectively. Extensive experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models, and as a result significantly boosts the visual recognition performance in fine-grained few-shot learning.
In this paper, we revisit the Image-to-Image (I2I) translation problem with transition consistency, namely the consistency defined on the conditional data mapping between each data pairs. Explicitly parameterizing each data mappings with a transition variable $t$, i.e., $x overset{t(x,y)}{mapsto}y$, we discover that existing I2I translation models mainly focus on maintaining consistency on results, e.g., image reconstruction or attribute prediction, named result consistency in our paper. This restricts their generalization ability to generate satisfactory results with unseen transitions in the test phase. Consequently, we propose to enforce both result consistency and transition consistency for I2I translation, to benefit the problem with a closer consistency between the input and output. To benefit the generalization ability of the translation model, we propose transition encoding to facilitate explicit regularization of these two {kinds} of consistencies on unseen transitions. We further generalize such explicitly regularized consistencies to distribution-level, thus facilitating a generalized overall consistency for I2I translation problems. With the above design, our proposed model, named Transition Encoding GAN (TEGAN), can poss superb generalization ability to generate realistic and semantically consistent translation results with unseen transitions in the test phase. It also provides a unified understanding of the existing GAN-based I2I transition models with our explicitly modeling of the data mapping, i.e., transition. Experiments on four different I2I translation tasks demonstrate the efficacy and generality of TEGAN.
Recently, unsupervised exemplar-based image-to-image translation, conditioned on a given exemplar without the paired data, has accomplished substantial advancements. In order to transfer the information from an exemplar to an input image, existing me thods often use a normalization technique, e.g., adaptive instance normalization, that controls the channel-wise statistics of an input activation map at a particular layer, such as the mean and the variance. Meanwhile, style transfer approaches similar task to image translation by nature, demonstrated superior performance by using the higher-order statistics such as covariance among channels in representing a style. In detail, it works via whitening (given a zero-mean input feature, transforming its covariance matrix into the identity). followed by coloring (changing the covariance matrix of the whitened feature to those of the style feature). However, applying this approach in image translation is computationally intensive and error-prone due to the expensive time complexity and its non-trivial backpropagation. In response, this paper proposes an end-to-end approach tailored for image translation that efficiently approximates this transformation with our novel regularization methods. We further extend our approach to a group-wise form for memory and time efficiency as well as image quality. Extensive qualitative and quantitative experiments demonstrate that our proposed method is fast, both in training and inference, and highly effective in reflecting the style of an exemplar. Finally, our code is available at https://github.com/WonwoongCho/GDWCT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا