ترغب بنشر مسار تعليمي؟ اضغط هنا

Image-to-Image Translation with Multi-Path Consistency Regularization

68   0   0.0 ( 0 )
 نشر من قبل Jianxin Lin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image translation across different domains has attracted much attention in both machine learning and computer vision communities. Taking the translation from source domain $mathcal{D}_s$ to target domain $mathcal{D}_t$ as an example, existing algorithms mainly rely on two kinds of loss for training: One is the discrimination loss, which is used to differentiate images generated by the models and natural images; the other is the reconstruction loss, which measures the difference between an original image and the reconstructed version through $mathcal{D}_stomathcal{D}_ttomathcal{D}_s$ translation. In this work, we introduce a new kind of loss, multi-path consistency loss, which evaluates the differences between direct translation $mathcal{D}_stomathcal{D}_t$ and indirect translation $mathcal{D}_stomathcal{D}_atomathcal{D}_t$ with $mathcal{D}_a$ as an auxiliary domain, to regularize training. For multi-domain translation (at least, three) which focuses on building translation models between any two domains, at each training iteration, we randomly select three domains, set them respectively as the source, auxiliary and target domains, build the multi-path consistency loss and optimize the network. For two-domain translation, we need to introduce an additional auxiliary domain and construct the multi-path consistency loss. We conduct various experiments to demonstrate the effectiveness of our proposed methods, including face-to-face translation, paint-to-photo translation, and de-raining/de-noising translation.

قيم البحث

اقرأ أيضاً

167 - Yihao Zhao , Ruihai Wu , Hao Dong 2020
Unpaired image-to-image translation is a class of vision problems whose goal is to find the mapping between different image domains using unpaired training data. Cycle-consistency loss is a widely used constraint for such problems. However, due to th e strict pixel-level constraint, it cannot perform geometric changes, remove large objects, or ignore irrelevant texture. In this paper, we propose a novel adversarial-consistency loss for image-to-image translation. This loss does not require the translated image to be translated back to be a specific source image but can encourage the translated images to retain important features of the source images and overcome the drawbacks of cycle-consistency loss noted above. Our method achieves state-of-the-art results on three challenging tasks: glasses removal, male-to-female translation, and selfie-to-anime translation.
Recent advances of image-to-image translation focus on learning the one-to-many mapping from two aspects: multi-modal translation and multi-domain translation. However, the existing methods only consider one of the two perspectives, which makes them unable to solve each others problem. To address this issue, we propose a novel unified model, which bridges these two objectives. First, we disentangle the input images into the latent representations by an encoder-decoder architecture with a conditional adversarial training in the feature space. Then, we encourage the generator to learn multi-mappings by a random cross-domain translation. As a result, we can manipulate different parts of the latent representations to perform multi-modal and multi-domain translations simultaneously. Experiments demonstrate that our method outperforms state-of-the-art methods.
Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.
We introduce GANHopper, an unsupervised image-to-image translation network that transforms images gradually between two domains, through multiple hops. Instead of executing translation directly, we steer the translation by requiring the network to pr oduce in-between images that resemble weighted hybrids between images from the input domains. Our network is trained on unpaired images from the two domains only, without any in-between images. All hops are produced using a single generator along each direction. In addition to the standard cycle-consistency and adversarial losses, we introduce a new hybrid discriminator, which is trained to classify the intermediate images produced by the generator as weighted hybrids, with weights based on a predetermined hop count. We also add a smoothness term to constrain the magnitude of each hop, further regularizing the translation. Compared to previous methods, GANHopper excels at image translations involving domain-specific image features and geometric variations while also preserving non-domain-specific features such as general color schemes.
Unsupervised image translation aims to learn the transformation from a source domain to another target domain given unpaired training data. Several state-of-the-art works have yielded impressive results in the GANs-based unsupervised image-to-image t ranslation. It fails to capture strong geometric or structural changes between domains, or it produces unsatisfactory result for complex scenes, compared to local texture mapping tasks such as style transfer. Recently, SAGAN (Han Zhang, 2018) showed that the self-attention network produces better results than the convolution-based GAN. However, the effectiveness of the self-attention network in unsupervised image-to-image translation tasks have not been verified. In this paper, we propose an unsupervised image-to-image translation with self-attention networks, in which long range dependency helps to not only capture strong geometric change but also generate details using cues from all feature locations. In experiments, we qualitatively and quantitatively show superiority of the proposed method compared to existing state-of-the-art unsupervised image-to-image translation task. The source code and our results are online: https://github.com/itsss/img2img_sa and http://itsc.kr/2019/01/24/2019_img2img_sa
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا