ﻻ يوجد ملخص باللغة العربية
Image translation across different domains has attracted much attention in both machine learning and computer vision communities. Taking the translation from source domain $mathcal{D}_s$ to target domain $mathcal{D}_t$ as an example, existing algorithms mainly rely on two kinds of loss for training: One is the discrimination loss, which is used to differentiate images generated by the models and natural images; the other is the reconstruction loss, which measures the difference between an original image and the reconstructed version through $mathcal{D}_stomathcal{D}_ttomathcal{D}_s$ translation. In this work, we introduce a new kind of loss, multi-path consistency loss, which evaluates the differences between direct translation $mathcal{D}_stomathcal{D}_t$ and indirect translation $mathcal{D}_stomathcal{D}_atomathcal{D}_t$ with $mathcal{D}_a$ as an auxiliary domain, to regularize training. For multi-domain translation (at least, three) which focuses on building translation models between any two domains, at each training iteration, we randomly select three domains, set them respectively as the source, auxiliary and target domains, build the multi-path consistency loss and optimize the network. For two-domain translation, we need to introduce an additional auxiliary domain and construct the multi-path consistency loss. We conduct various experiments to demonstrate the effectiveness of our proposed methods, including face-to-face translation, paint-to-photo translation, and de-raining/de-noising translation.
Unpaired image-to-image translation is a class of vision problems whose goal is to find the mapping between different image domains using unpaired training data. Cycle-consistency loss is a widely used constraint for such problems. However, due to th
Recent advances of image-to-image translation focus on learning the one-to-many mapping from two aspects: multi-modal translation and multi-domain translation. However, the existing methods only consider one of the two perspectives, which makes them
Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style
We introduce GANHopper, an unsupervised image-to-image translation network that transforms images gradually between two domains, through multiple hops. Instead of executing translation directly, we steer the translation by requiring the network to pr
Unsupervised image translation aims to learn the transformation from a source domain to another target domain given unpaired training data. Several state-of-the-art works have yielded impressive results in the GANs-based unsupervised image-to-image t