ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam Steering with Ultracompact and Low-Power Silicon Resonator Phase Shifters

125   0   0.0 ( 0 )
 نشر من قبل Hugo Larocque
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photonic integrated circuit (PIC) phased arrays can be an enabling technology for a broad range of applications including free-space laser communications on compact moving platforms. However, scaling PIC phased arrays to a large number of array elements is limited by the large size and high power consumption of individual phase shifters used for beam steering. In this paper, we demonstrate silicon PIC phased array beam steering based on thermally tuned ultracompact microring resonator phase shifters with a radius of a few microns. These resonators integrated with micro-heaters are designed to be strongly coupled to an external waveguide, thereby providing a large and adjustable phase shift with a small residual amplitude modulation while consuming an average power of 0.4 mW. We also introduce characterization techniques for the calibration of resonator phase shifters in the phased array. With such compact phase shifters and our calibration techniques, we demonstrate beam steering with a 1x8 PIC phased array. The small size of these resonator phase shifters will enable low-power and ultra-large scale PIC phased arrays for long distance laser communication systems.



قيم البحث

اقرأ أيضاً

We report a THz reflectarray metasurface which uses graphene as active element to achieve beam steering, shaping and broadband phase modulation. This is based on the creation of a voltage controlled reconfigurable phase hologram, which can impart dif ferent reflection angles and phases to an incident beam, replacing bulky and fragile rotating mirrors used for terahertz imaging. This can also find applications in other regions of the electromagnetic spectrum, paving the way to versatile optical devices including light radars, adaptive optics, electro-optical modulators and screens.
144 - Chao Li , Xianyi Cao , Kan Wu 2021
We demonstrate a blind zone-suppressed and flash-emitting solid-state Lidar based on lens-assisted beam steering (LABS) technology. As a proof-of-concept demonstration, with a design of subwavelength-gap one-dimensional (1D) long-emitter array and mu lti-wavelength flash beam emitting, the device was measured to have 5%-blind zone suppression, 0.06{deg}/point-deflection step and 4.2 microsecond-scanning speed. In time-of-flight (TOF) ranging experiments, Lidar systems have field of view of 11.3{deg}* 8.1{deg} (normal device) or 0.9{deg}*8.1{deg} (blind-zone suppressed device), far-field number of resolved points of 192 and a detection distance of 10 m. This work demonstrates the possibility that a new integrated beam-steering technology can be implemented in a Lidar without sacrificing other performance.
Phase-change materials (PCMs) have emerged as promising active elements in silicon (Si) photonic systems. In this work, we design, fabricate, and characterize a hybrid Si-PCM optical modulator. By integrating vanadium dioxide (a PCM) within a Si phot onic waveguide, in a non-resonant geometry, we demonstrate ~ 10 dB broadband modulation with a PCM length of 500 nm.
Here, we experimentally demonstrate an Indium Tin Oxide (ITO) Mach-Zehnder interferometer heterogeneously integrated in silicon photonics. The phase shifter section is realized in a novel lateral MOS configuration, which, due to favorable electrostat ic overlap, leads to efficient modulation (V{pi}L = 63 Vum). This is achieved by (i) selecting a strong index changing material (ITO) and (ii) improving the field overlap as verified by the electrostatic field lines. Furthermore, we show that this platform serves as a building block in an endfire silicon photonics optical phased array (OPA) with a half-wavelength pitch within the waveguides with anticipated performance, including narrow main beam lobe (<3{deg}) and >10 dB suppression of the side lobes, while electrostatically steering the emission profile up to plus/minus 80{deg}, and if further engineered, can lead not only towards nanosecond-fast beam steering capabilities in LiDAR systems but also in holographic display, free-space optical communications, and optical switches.
We report on the first experimental demonstration of terahertz (THz) whispering-gallery modes (WGMs) with an ultra high quality (Q) factor of $1.5 times {10}^{4}$ at 0.62THz. The WGMs are observed in a high resistivity float zone silicon (HRFZ-Si) sp herical resonator coupled to a sub-wavelength silica waveguide. A detailed analysis of the coherent continuous wave (CW) THz spectroscopy measurements combined with a numerical model based on Mie-Debye-Aden-Kerker (MDAK) theory allows to unambiguously identify the observed higher order radial THz WGMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا