ترغب بنشر مسار تعليمي؟ اضغط هنا

Tomography of a Feedback Measurement with Photon Detection

192   0   0.0 ( 0 )
 نشر من قبل Shuro Izumi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum measurement is essential to both the foundations and practical applications of quantum information science. Among many possible models of quantum measurement, feedback measurements that dynamically update their physical structure are highly interesting due to their flexibility which enables a wide range of measurements that might otherwise be hard to implement. Here we investigate by detector tomography a measurement consisting of a displacement operation combined with photon detection followed by a real time feedback operation. We design the measurement in order to discriminate the superposition of vacuum and single photon states -- the single-rail qubit -- and find that it can discriminate the superposition states with a certainty of 96%. Such a feedback-controlled photon counter will facilitate the realization of quantum information protocols with single-rail qubits as well as the non-locality test of certain entangled states.

قيم البحث

اقرأ أيضاً

Much of modern metrology and communication technology encodes information in electromagnetic waves, typically as an amplitude or phase. While current hardware can perform near-ideal measurements of photon number or field amplitude, to date no device exists that can even in principle perform an ideal phase measurement. In this work, we implement a single-shot canonical phase measurement on a one-photon wave packet, which surpasses the current standard of heterodyne detection and is optimal for single-shot phase estimation. By applying quantum feedback to a Josephson parametric amplifier, our system adaptively changes its measurement basis during photon arrival and allows us to validate the detectors performance by tracking the quantum state of the photon source. These results provide an important capability for optical quantum computing, and demonstrate that quantum feedback can both enhance the precision of a detector and enable it to measure new classes of physical observables.
206 - G. Buonaiuto , I. Lesanovsky , 2020
We theoretically investigate measurement-based feedback control of a laser-driven one-dimensional atomic chain interfaced with a nanofiber. The interfacing leads to all-to-all interactions among the atomic emitters and induces chirality, i.e. the dir ectional emission of photons into a preferred guided mode of the nanofiber. In the setting we consider, the measurement of guided light -- conducted either by photon counting or through homodyne detection of the photocurrent quadratures -- is fed back into the system through a modulation of the driving laser field. We investigate how this feedback scheme influences the photon counting rate and the quadratures of the guided light field. Moreover, we analyse how feedback alters the many-body steady state of the atom chain. Our results provide some insights on how to control and engineer dynamics in light-matter networks realizable with state-of-the-art experimental setups.
We consider realistic measurement systems, where measurements are accompanied by decoherence processes. The aim of this work is the construction of methods and algorithms for precise quantum measurements with fidelity close to the fundamental limit. In the present work the notions of ideal and non-ideal quantum measurements are strictly formalized. It is shown that non-ideal quantum measurements could be represented as a mixture of ideal measurements. Based on root approach the quantum state reconstruction method is developed. Informational accuracy theory of non-ideal quantum measurements is proposed. The monitoring of the amount of information about the quantum state parameters is examined, including the analysis of the information degradation under the noise influence. The study of achievable fidelity in non-ideal quantum measurements is performed. The results of simulation of fidelity characteristics of a wide class of quantum protocols based on polyhedrons geometry with high level of symmetry are presented. The impact of different decoherence mechanisms, including qubit amplitude and phase relaxation, bit-flip and phase-flip, is considered.
We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed non-degenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two ph otons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.
We calculate numerically the capacity of a lossy photon channel assuming photon number resolving detection at the output. We consider scenarios of input Fock and coherent states ensembles and show that the latter always exhibits worse performance tha n the former. We obtain capacity of a discrete-time Poisson channel as a limiting behavior of the Fock states ensemble capacity. We show also that in the regime of a moderate number of photons and low losses the Fock states ensemble with direct detection is beneficial with respect to capacity limits achievable with quadrature detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا