ﻻ يوجد ملخص باللغة العربية
Characterizing the elastic properties of soft materials through bulge testing relies on accurate measurement of deformation, which is experimentally challenging. To avoid measuring deformation, we propose a hydrodynamic bulge test for characterizing the material properties of thick, pre-stressed elastic sheets via their fluid--structure interaction with a steady viscous fluid flow. Specifically, the hydrodynamic bulge test relies on a pressure drop measurement across a rectangular microchannel with a deformable top wall. We develop a mathematical model using first-order shear-deformation theory of plates with stretching, and the lubrication approximation for Newtonian fluid flow. Specifically, a relationship is derived between the imposed flow rate and the total pressure drop. Then, this relationship is inverted numerically to yield estimates of the Youngs modulus (given the Poisson ratio), if the pressure drop is measured (given the steady flow rate). Direct numerical simulations of two-way-coupled fluid--structure interaction are carried out in ANSYS to determine the cross-sectional membrane deformation and the hydrodynamic pressure distribution. Taking the simulations as ``ground truth, a hydrodynamic bulge test is performed using the simulation data to ascertain the accuracy and validity of the proposed methodology for estimating material properties. An error propagation analysis is performed via Monte Carlo simulation to characterize the susceptibility of the hydrodynamic bulge test estimates to noise. We find that, while a hydrodynamic bulge test is less accurate in characterizing material properties, it is less susceptible to noise, in the input (measured) variable, than a hydrostatic bulge test.
Randomly crumpled sheets have shape memory. In order to understand the basis of this form of memory, we simulate triangular lattices of springs whose lengths are altered to create a topography with multiple potential energy minima. We then deform the
Atomistic simulations are employed to study structural evolution of pore ensembles in binary glasses under periodic shear deformation with varied amplitude. The consideration is given to porous systems in the limit of low porosity. The initial ensemb
The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such non-affine deformation via the anisotropic pair di
The theory of quasi-linear viscoelasticity (QLV) is modified and developed for transversely isotropic (TI) materials under finite deformation. For the first time, distinct relaxation responses are incorporated into an integral formulation of nonlinea
A model is proposed that considers aging and rejuvenation in a soft glassy material as respectively a decrease and an increase in free energy. The aging term is weighted by inverse of characteristic relaxation time suggesting greater mobility of the