ﻻ يوجد ملخص باللغة العربية
Line-intensity mapping of the 21cm line is a powerful probe of large scale structure at z<6, tracing large-scale structure via neutral hydrogen content that is found within galaxies. In principle, it enables cost-efficient surveys of the matter distribution up to z~6, unlocking orders of magnitude more modes for observational cosmology. Canada has been a traditional leader in this field, having led the first detections of the cosmological 21cm signal via cross-correlations with optical galaxy surveys and having constructed the Canadian Hydrogen Intensity Mapping Experiment (CHIME). The field is now entering a new era where data is abundant, allowing studies in how to overcome systematics to be tackled in an empirical, head-on fashion. In the next few years, this will produce the first detection of the 21cm auto power spectrum, which will pave the way towards a large suite of scientific possibilities. These potentially include precision measurements on the dark energy equation of state and other LCDM parameters, constraints on how HI mass traces dark matter, a detection of neutrino effects on large-scale structure, and the use of 21cm lensing to further constrain cosmology. To turn these promising directions into reality, we recommend a sustained program of investment in 21cm cosmology, starting with funding for the Canadian Hydrogen Observatory and Radio transient Detector (CHORD), followed by small-scale development efforts targeting next-generation hardware and sustained support for theory and technical staff support. Additionally, Canada should invest in complementary line-intensity mapping efforts (such as with CO or [CII] lines) and maintain participation in next-generation international efforts such as the Packed Ultra-wideband Mapping Array (PUMA) and the Square Kilometre Array (SKA).
In the next few years, the 21cm line will enable direct observations of the Dark Ages, Cosmic Dawn, and Reionization, which represent previously unexplored periods in our cosmic history. With a combination of sky-averaged global signal measurements a
We investigate the possibility of performing cosmological studies in the redshift range $2.5<z<5$ through suitable extensions of existing and upcoming radio-telescopes like CHIME, HIRAX and FAST. We use the Fisher matrix technique to forecast the bou
Future Square Kilometre Array (SKA) surveys are expected to generate huge datasets of 21cm maps on cosmological scales from the Epoch of Reionization (EoR). We assess the viability of exploiting machine learning techniques, namely, convolutional neur
Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is da
In addition to being a probe of Cosmic Dawn and Epoch of Reionization astrophysics, the 21cm line at $z>6$ is also a powerful way to constrain cosmology. Its power derives from several unique capabilities. First, the 21cm line is sensitive to energy