ترغب بنشر مسار تعليمي؟ اضغط هنا

High-redshift post-reionization cosmology with 21cm intensity mapping

107   0   0.0 ( 0 )
 نشر من قبل Andrej Obuljen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the possibility of performing cosmological studies in the redshift range $2.5<z<5$ through suitable extensions of existing and upcoming radio-telescopes like CHIME, HIRAX and FAST. We use the Fisher matrix technique to forecast the bounds that those instruments can place on the growth rate, the BAO distance scale parameters, the sum of the neutrino masses and the number of relativistic degrees of freedom at decoupling, $N_{rm eff}$. We point out that quantities that depend on the amplitude of the 21cm power spectrum, like $fsigma_8$, are completely degenerate with $Omega_{rm HI}$ and $b_{rm HI}$, and propose several strategies to independently constraint them through cross-correlations with other probes. Assuming $5%$ priors on $Omega_{rm HI}$ and $b_{rm HI}$, $k_{rm max}=0.2~h{rm Mpc}^{-1}$ and the primary beam wedge, we find that a HIRAX extension can constrain, within bins of $Delta z=0.1$: 1) the value of $fsigma_8$ at $simeq4%$, 2) the value of $D_A$ and $H$ at $simeq1%$. In combination with data from Euclid-like galaxy surveys and CMB S4, the sum of the neutrino masses can be constrained with an error equal to $23$ meV ($1sigma$), while $N_{rm eff}$ can be constrained within 0.02 ($1sigma$). We derive similar constraints for the extensions of the other instruments. We study in detail the dependence of our results on the instrument, amplitude of the HI bias, the foreground wedge coverage, the nonlinear scale used in the analysis, uncertainties in the theoretical modeling and the priors on $b_{rm HI}$ and $Omega_{rm HI}$. We conclude that 21cm intensity mapping surveys operating in this redshift range can provide extremely competitive constraints on key cosmological parameters.


قيم البحث

اقرأ أيضاً

In the next few years, the 21cm line will enable direct observations of the Dark Ages, Cosmic Dawn, and Reionization, which represent previously unexplored periods in our cosmic history. With a combination of sky-averaged global signal measurements a nd spatial mapping surveys, the possible science return is enormous. This potentially includes (but is not limited to) constraints on first-generation galaxies (such as their typical masses and luminosities), constraints on cosmological parameters, a measurement of the Hubble parameter at z~15 to 20, the elimination of the optical depth nuisance parameter in the CMB, and searches for exotic phenomena such as baryon-dark matter couplings. To enable continued Canadian leadership in these science opportunities, we recommend 1) continued investments in 21cm experiments at all redshifts, 2) detailed analysis efforts of current data to overcome systematic effects, 3) new investments in preliminary experiments to explore the truly low-frequency sky as a stepping stone towards the Dark Ages, 4) new investments in line-intensity mapping experiments beyond the 21cm line, 5) continued theory support for 21cm cosmology, and 6) continued participation and knowledge transfer to next-generation international efforts such as the Square Kilometre Array.
[Abridged] We study the abundance and clustering properties of HI at redshifts $zleqslant5$ using TNG100, a large state-of-the-art magneto-hydrodynamic simulation of a 75 Mpc/h box size. We show that most of the HI lies within dark matter halos and q uantify the average HI mass hosted by halos of mass M at redshift z. We find that only halos with circular velocities larger than $simeq$ 30 km/s contain HI. While the density profiles of HI exhibit a large halo-to-halo scatter, the mean profiles are universal across mass and redshift. The HI in low-mass halos is mostly located in the central galaxy, while in massive halos is concentrated in the satellites. We show that the HI and matter density probability distribution functions differ significantly. Our results point out that for small halos the HI bulk velocity goes in the same direction and has the same magnitude as the halo peculiar velocity, while in large halos differences show up. We find that halo HI velocity dispersion follows a power-law with halo mass. We find a complicated HI bias, with HI becoming non-linear already at $k=0.3$ h/Mpc at $zgtrsim3$. Our simulation reproduces the DLAs bias value from observations. We find that the clustering of HI can be accurately reproduced by perturbative methods. We identify a new secondary bias, by showing that the clustering of halos depends not only on mass but also on HI content. We compute the amplitude of the HI shot-noise and find that it is small at all redshifts. We study the clustering of HI in redshift-space, and show that linear theory can explain the ratio between the monopoles in redshift- and real-space down to small scales at high redshift. We find that the amplitude of the Fingers-of-God effect is larger for HI than for matter. We point out that accurate 21 cm maps can be created from N-body or approximate simulations rather than full hydrodynamic simulations.
Line-intensity mapping of the 21cm line is a powerful probe of large scale structure at z<6, tracing large-scale structure via neutral hydrogen content that is found within galaxies. In principle, it enables cost-efficient surveys of the matter distr ibution up to z~6, unlocking orders of magnitude more modes for observational cosmology. Canada has been a traditional leader in this field, having led the first detections of the cosmological 21cm signal via cross-correlations with optical galaxy surveys and having constructed the Canadian Hydrogen Intensity Mapping Experiment (CHIME). The field is now entering a new era where data is abundant, allowing studies in how to overcome systematics to be tackled in an empirical, head-on fashion. In the next few years, this will produce the first detection of the 21cm auto power spectrum, which will pave the way towards a large suite of scientific possibilities. These potentially include precision measurements on the dark energy equation of state and other LCDM parameters, constraints on how HI mass traces dark matter, a detection of neutrino effects on large-scale structure, and the use of 21cm lensing to further constrain cosmology. To turn these promising directions into reality, we recommend a sustained program of investment in 21cm cosmology, starting with funding for the Canadian Hydrogen Observatory and Radio transient Detector (CHORD), followed by small-scale development efforts targeting next-generation hardware and sustained support for theory and technical staff support. Additionally, Canada should invest in complementary line-intensity mapping efforts (such as with CO or [CII] lines) and maintain participation in next-generation international efforts such as the Packed Ultra-wideband Mapping Array (PUMA) and the Square Kilometre Array (SKA).
Line-Intensity Mapping is an emerging technique which promises new insights into the evolution of the Universe, from star formation at low redshifts to the epoch of reionization and cosmic dawn. It measures the integrated emission of atomic and molec ular spectral lines from galaxies and the intergalactic medium over a broad range of frequencies, using instruments with aperture requirements that are greatly relaxed relative to surveys for single objects. A coordinated, comprehensive, multi-line intensity-mapping experimental effort can efficiently probe over 80% of the volume of the observable Universe - a feat beyond the reach of other methods. Line-intensity mapping will uniquely address a wide array of pressing mysteries in galaxy evolution, cosmology, and fundamental physics. Among them are the cosmic history of star formation and galaxy evolution, the compositions of the interstellar and intergalactic media, the physical processes that take place during the epoch of reionization, cosmological inflation, the validity of Einsteins gravity theory on the largest scales, the nature of dark energy and the origin of dark matter.
In this white paper, we lay out a US roadmap for high-redshift 21 cm cosmology (30 < z < 6) in the 2020s. Beginning with the currently-funded HERA and MWA Phase II projects and advancing through the decade with a coordinated program of small-scale in strumentation, software, and analysis projects targeting technology development, this roadmap incorporates our current best understanding of the systematics confronting 21 cm cosmology into a plan for overcoming them, enabling next-generation, mid-scale 21 cm arrays to be proposed late in the decade. Submitted for consideration by the Astro2020 Decadal Survey Program Panel for Radio, Millimeter, and Submillimeter Observations from the Ground as a Medium-Sized Project.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا