ﻻ يوجد ملخص باللغة العربية
In this paper, we report enhanced breakdown characteristics of Pt/BaTiO3/Al0.58Ga0.42N lateral heterojunction diodes compared to Pt/Al0.58Ga0.42N Schottky diodes. BaTiO3, an extreme dielectric constant material, has been used, in this study, as dielectric material under the anode to significantly reduce the peak electric field at the anode edge of the heterojunction diode such that the observed average breakdown field was higher than 8 MV/cm, achieved for devices with anode to cathode spacing less than 0.2 microns. Control Schottky anode devices (Pt/Al0.58Ga0.42N) fabricated on the same sample displayed an average breakdown field around 4 MV/cm for devices with similar dimensions. While both breakdown fields are significantly higher than those exhibited by incumbent technologies such as GaN-based devices, BaTiO3 can enable more effective utilization of the higher breakdown fields available in ultra-wide bandgap materials by proper electric field management. This demonstration thus lays the groundwork needed to realize ultra-scaled lateral devices with significantly improved breakdown characteristics.
Vertical $pn$ heterojunction diodes were prepared by plasma-assisted molecular beam epitaxy of unintentionally-doped $p$-type SnO layers with hole concentrations ranging from $p=10^{18}$ to $10^{19}$cm$^{-3}$ on unintentionally-doped $n$-type $beta$-
We fabricate AlGaN nanowires by molecular beam epitaxy and we investigate their field emission properties by means of an experimental setup using nano-manipulated tungsten tips as electrodes, inside a scanning electron microscope. The tip-shaped anod
Wide and ultra-wide band gap semiconductors can provide excellent performance due to their high energy band gap, which leads to breakdown electric fields that are more than an order of magnitude higher than conventional silicon electronics. In materi
Two-dimensional (2D) materials and heterostructures have recently gained wide attention due to potential applications in optoelectronic devices. However, the optical properties of the heterojunction have not been properly characterized due to the lim
Single-photon emitting devices have been identified as an important building block for applications in quantum information and quantum communication. They allow to transduce and collect quantum information over a long distance via photons as so calle