ﻻ يوجد ملخص باللغة العربية
Ultrashort pulses from Kerr-lens mode-locked oscillators have inspired a variety of applications. The design and alignment of these laser resonators have thus far been theoretically supported by the conventional analysis of beam propagation. However, the well-established theoretical framework is sometimes beyond the scope of high-peak-power oscillators. In this paper, we analyze the geometry of ring resonators by extending the ABCD-matrix method to a high-peak-power regime. The guidelines to achieving stable Kerr-lens mode-locking is provided for high-peak-power pulses.
The theoretical calculation for nonlinear refractive index in Cr: ZnSe - active medium predicts the strong defocusing cascaded second-order nonlinearity within 2000 - 3000 nm spectral range. On the basis of this result the optimal cavity configuratio
We introduce a mechanism of stable spatiotemporal soliton formation in a multimode fiber laser. This is based on spatially graded dissipation, leading to distributed Kerr-lens mode-locking. Our analysis involves solutions of a generalized dissipative
Lasers based on Cr$^{2+}$-doped II-VI material, often known as the Ti:Sapphire of the mid-infrared, can directly provide few-cycle pulses with super-octave-spanning spectra, and serve as efficient drivers for generating broadband mid-infrared radiati
We theoretically investigate the phase-locking phenomena between the spectral components of Kerr optical frequency combs in the dynamical regime of Turing patterns. We show that these Turing patterns display a particularly strong and robust phase-loc
Mode-locking is a process in which different modes of an optical resonator establish, through nonlinear interactions, stable synchronization. This self-organization underlies light sources that enable many modern scientific applications, such as ultr