ﻻ يوجد ملخص باللغة العربية
Products of random matrix products of $mathrm{SL}(2,mathbb{R})$, corresponding to transfer matrices for the one-dimensional Schrodinger equation with a random potential $V$, are studied. I consider both the case where the potential has a finite second moment $langle V^2rangle<infty$ and the case where its distribution presents a power law tail $p(V)sim|V|^{-1-alpha}$ for $0<alpha<2$. I study the generalized Lyapunov exponent of the random matrix product (i.e. the cumulant generating function of the logarithm of the wave function). In the high energy/weak disorder limit, it is shown to be given by a universal formula controlled by a unique scale (single parameter scaling). For $langle V^2rangle<infty$, one recovers Gaussian fluctuations with the variance equal to the mean value: $gamma_2simeqgamma_1$. For $langle V^2rangle=infty$, one finds $gamma_2simeq(2/alpha),gamma_1$ and non Gaussian large deviations, related to the universal limiting behaviour of the conductance distribution $W(g)sim g^{-1+alpha/2}$ for $gto0$.
In a recent publication, J. Phys.: Condens. Matt. 14 13777 (2002), Kuzovkov et. al. announced an analytical solution of the two-dimensional Anderson localisation problem via the calculation of a generalised Lyapunov exponent using signal theory. Surp
I present a general framework allowing to carry out explicit calculation of the moment generating function of random matrix products $Pi_n=M_nM_{n-1}cdots M_1$, where $M_i$s are i.i.d.. Following Tutubalin [Theor. Probab. Appl. {bf 10}, 15 (1965)], t
We report improved numerical estimates of the critical exponent of the Anderson transition in Andersons model of localization in $d=4$ and $d=5$ dimensions. We also report a new Borel-Pade analysis of existing $epsilon$ expansion results that incorpo
We describe a Borel-Pade re-summation of the $beta$-function in the three Wigner-Dyson symmetry classes. Using this approximate $beta$-function we discuss the dimensional dependence of the critical exponent and compare with numerical estimates. We al
We report a numerical investigation of the fluctuations of the Lyapunov exponent of a two dimensional non-interacting disordered system. While the ratio of the mean to the variance of the Lyapunov exponent is not constant, as it is in one dimension,