ﻻ يوجد ملخص باللغة العربية
I present a general framework allowing to carry out explicit calculation of the moment generating function of random matrix products $Pi_n=M_nM_{n-1}cdots M_1$, where $M_i$s are i.i.d.. Following Tutubalin [Theor. Probab. Appl. {bf 10}, 15 (1965)], the calculation of the generating function is reduced to finding the largest eigenvalue of a certain transfer operator associated with a family of representations of the group. The formalism is illustrated by considering products of random matrices from the group $mathrm{SL}(2,mathbb{R})$ where explicit calculations are possible. For concreteness, I study in detail transfer matrix products for the one-dimensional Schrodinger equation where the random potential is a Levy noise (derivative of a Levy process). In this case, I obtain a general formula for the variance of $ln||Pi_n||$ and for the variance of $ln|psi(x)|$, where $psi(x)$ is the wavefunction, in terms of a single integral involving the Fourier transform of the invariant density of the matrix product. Finally I discuss the continuum limit of random matrix products (matrices close to the identity ). In particular, I investigate a simple case where the spectral problem providing the generalized Lyapunov exponent can be solved exactly.
We use supersymmetry to calculate exact spectral densities for a class of complex random matrix models having the form $M=S+LXR$, where $X$ is a random noise part $X$ and $S,L,R$ are fixed structure parts. This is a certain version of the external fi
Products of random matrix products of $mathrm{SL}(2,mathbb{R})$, corresponding to transfer matrices for the one-dimensional Schrodinger equation with a random potential $V$, are studied. I consider both the case where the potential has a finite secon
In this paper, we study the product of two complex Ginibre matrices and the loop equations satisfied by their resolvents (i.e. the Stieltjes transform of the correlation functions). We obtain using Schwinger-Dyson equation (SDE) techniques the genera
We investigate eigenvalue moments of matrices from Circular Orthogonal Ensemble multiplicatively perturbed by a permutation matrix. More precisely we investigate variance of the sum of the eigenvalues raised to power $k$, for arbitrary but fixed $k$
Random boundary conditions are one of the simplest realizations of quenched disorder. They have been used as an illustration of various conceptual issues in the theory of disordered spin systems. Here we review some of these results.