ﻻ يوجد ملخص باللغة العربية
We present an image preprocessing technique capable of improving the performance of few-shot classifiers on abstract visual reasoning tasks. Many visual reasoning tasks with abstract features are easy for humans to learn with few examples but very difficult for computer vision approaches with the same number of samples, despite the ability for deep learning models to learn abstract features. Same-different (SD) problems represent a type of visual reasoning task requiring knowledge of pattern repetition within individual images, and modern computer vision approaches have largely faltered on these classification problems, even when provided with vast amounts of training data. We propose a simple method for solving these problems based on the insight that removing peaks from the amplitude spectrum of an image is capable of emphasizing the unique parts of the image. When combined with several classifiers, our method performs well on the SD SVRT tasks with few-shot learning, improving upon the best comparable results on all tasks, with average absolute accuracy increases nearly 40% for some classifiers. In particular, we find that combining Relational Networks with this image preprocessing approach improves their performance from chance-level to over 90% accuracy on several SD tasks.
A disentangled representation encodes information about the salient factors of variation in the data independently. Although it is often argued that this representational format is useful in learning to solve many real-world down-stream tasks, there
Existing approaches to few-shot learning deal with tasks that have persistent, rigid notions of classes. Typically, the learner observes data only from a fixed number of classes at training time and is asked to generalize to a new set of classes at t
Machine learning classifiers are often trained to recognize a set of pre-defined classes. However, in many applications, it is often desirable to have the flexibility of learning additional concepts, with limited data and without re-training on the f
We propose a transductive Laplacian-regularized inference for few-shot tasks. Given any feature embedding learned from the base classes, we minimize a quadratic binary-assignment function containing two terms: (1) a unary term assigning query samples
In this article, we consider the problem of few-shot learning for classification. We assume a network trained for base categories with a large number of training examples, and we aim to add novel categories to it that have only a few, e.g., one or fi