ﻻ يوجد ملخص باللغة العربية
Phase curve observations provide an opportunity to study the full energy budgets of exoplanets by quantifying the amount of heat redistributed from their daysides to their nightsides. Theories explaining the properties of phase curves for hot Jupiters have focused on the balance between radiation and dynamics as the primary parameter controlling heat redistribution. However, recent phase curves have shown deviations from the trends that emerge from this theory, which has led to work on additional processes that may affect hot Jupiter energy budgets. One such process, molecular hydrogen dissociation and recombination, can enhance energy redistribution on ultra-hot Jupiters with temperatures above $sim2000$ K. In order to study the impact of H$_{2}$ dissociation on ultra-hot Jupiters, we present a phase curve of KELT-9b observed with the Spitzer Space Telescope at 4.5 $mu$m. KELT-9b is the hottest known transiting planet, with a 4.5-$mu$m dayside brightness temperature of $4566^{+140}_{-136}$ K and a nightside temperature of $2556^{+101}_{-97}$ K. We observe a phase curve amplitude of $0.609 pm 0.020$ and a hot spot offset of $18.7^{+2.1}_{-2.3}$ degrees. The observed amplitude is too small to be explained by a simple balance between radiation and advection. General circulation models (GCMs) and an energy balance model that include the effects of H$_{2}$ dissociation and recombination provide a better match to the data. The GCMs, however, predict a maximum hot spot offset of $5$ degrees, which disagrees with our observations at $>5sigma$ confidence. This discrepancy may be due to magnetic effects in the planets highly ionized atmosphere.
The chemical composition of an exoplanet is a key ingredient in constraining its formation history. Iron is the most abundant transition metal, but has never been directly detected in an exoplanet due to its highly refractory nature. KELT-9b (HD 1956
With a day-side temperature in excess of 4500K, comparable to a mid-K-type star, KELT-9b is the hottest planet known. Its extreme temperature makes KELT-9b a particularly interesting test bed for investigating the nature and diversity of gas giant pl
Thermal dissociation and recombination of molecular hydrogen, H_2, in the atmospheres of ultra-hot Jupiters (UHJs) has been shown to play an important role in global heat redistribution. This, in turn, significantly impacts their planetary emission,
Ultra-hot Jupiters are emerging as a new class of exoplanets. Studying their chemical compositions and temperature structures will improve the understanding of their mass loss rate as well as their formation and evolution. We present the detection of
Context. Observationally constraining the atmospheric temperature-pressure (TP) profile of exoplanets is an important step forward for improving planetary atmosphere models, further enabling one to place the detection of spectral features and the mea