ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b

86   0   0.0 ( 0 )
 نشر من قبل Kevin Heng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The chemical composition of an exoplanet is a key ingredient in constraining its formation history. Iron is the most abundant transition metal, but has never been directly detected in an exoplanet due to its highly refractory nature. KELT-9b (HD 195689b) is the archetype of the class of ultra-hot Jupiters that straddle the transition between stars and gas-giant exoplanets and serve as distinctive laboratories for studying atmospheric chemistry, because of its high equilibrium temperature of 4050 +/- 180 K. These properties imply that its atmosphere is a tightly constrained chemical system that is expected to be nearly in chemical equilibrium and cloud-free. It was previously predicted that the spectral lines of iron will be detectable in the visible range of wavelengths. At these high temperatures, iron and several other transition metals are not sequestered in molecules or cloud particles and exist solely in their atomic forms. Here, we report the direct detection of atomic neutral and singly-ionized iron (Fe and Fe+), and singly-ionized titanium (Ti+) in KELT-9b via the cross-correlation technique applied to high-resolution spectra obtained during the primary transit of the exoplanet.

قيم البحث

اقرأ أيضاً

With a day-side temperature in excess of 4500K, comparable to a mid-K-type star, KELT-9b is the hottest planet known. Its extreme temperature makes KELT-9b a particularly interesting test bed for investigating the nature and diversity of gas giant pl anets. We observed the transit of KELT-9b at high spectral resolution (R$sim$94,600) with the CARMENES instrument on the Calar Alto 3.5-m telescope. Using these data, we detect for the first time ionized calcium (CaII triplet) absorption in the atmosphere of KELT-9b; this is the second time that CaII has been observed in a hot Jupiter. Our observations also reveal prominent H$alpha$ absorption, confirming the presence of an extended hydrogen envelope around KELT-9b. We compare our detections with an atmospheric model and find that all four lines form between atmospheric temperatures of 6100 K and 8000 K and that the CaII lines form at pressures between 10 and 50 nbar while the H$alpha$ line forms at a lower pressure ($sim$6 nbar), higher up in the atmosphere. The altitude that the core of H$alpha$ line forms is found to be $sim$1.4 R$_{p}$, well within the planetary Roche lobe ($sim$1.9 R$_{p}$). Therefore, rather than probing the escaping upper atmosphere directly, the H$alpha$ line and the other observed Balmer and metal lines serve as atmospheric thermometers enabling us to probe the planets temperature profile, thus energy budget.
Phase curve observations provide an opportunity to study the full energy budgets of exoplanets by quantifying the amount of heat redistributed from their daysides to their nightsides. Theories explaining the properties of phase curves for hot Jupiter s have focused on the balance between radiation and dynamics as the primary parameter controlling heat redistribution. However, recent phase curves have shown deviations from the trends that emerge from this theory, which has led to work on additional processes that may affect hot Jupiter energy budgets. One such process, molecular hydrogen dissociation and recombination, can enhance energy redistribution on ultra-hot Jupiters with temperatures above $sim2000$ K. In order to study the impact of H$_{2}$ dissociation on ultra-hot Jupiters, we present a phase curve of KELT-9b observed with the Spitzer Space Telescope at 4.5 $mu$m. KELT-9b is the hottest known transiting planet, with a 4.5-$mu$m dayside brightness temperature of $4566^{+140}_{-136}$ K and a nightside temperature of $2556^{+101}_{-97}$ K. We observe a phase curve amplitude of $0.609 pm 0.020$ and a hot spot offset of $18.7^{+2.1}_{-2.3}$ degrees. The observed amplitude is too small to be explained by a simple balance between radiation and advection. General circulation models (GCMs) and an energy balance model that include the effects of H$_{2}$ dissociation and recombination provide a better match to the data. The GCMs, however, predict a maximum hot spot offset of $5$ degrees, which disagrees with our observations at $>5sigma$ confidence. This discrepancy may be due to magnetic effects in the planets highly ionized atmosphere.
Recently, Nadir and Occultation for Mars Discovery (NOMAD) ultraviolet and visible spectrometer instrument on board the European Space Agencys ExoMars Trace Gas Orbiter (TGO) simultaneously measured the limb emission intensities for both [OI] 2972 an d 5577 {AA} (green) emissions in the dayside of Martian upper atmosphere. We aim to explore the photochemistry of all these forbidden atomic oxygen emissions ([OI] 2972, 5577, 6300, 6464 {AA}) in the Martian daylight upper atmosphere and suitable conditions for the simultaneous detection of these emissions lines in the dayside visible spectra. A photochemical model is developed to study the production and loss processes of O(1S) and O(1D) by incorporating various chemical reactions of different O-bearing species in the upper atmosphere of Mars. By reducing Fox (2004) modelled neutral density profiles by a factor of 2, the calculated limb intensity profiles for [OI] 5577 and 2972 {AA} emissions are found to be consistent with the NOMAD-TGO observations. In this case, at altitudes below 120 km, our modelled limb intensity for [OI] 6300 {AA} emission is smaller by a factor 2 to 5 compared to that of NOMAD-TGO observation for [OI] 2972 {AA} emission, and above this distance it is comparable with the upper limit of the observation. We studied various parameters which can influence the limb intensities of these atomic oxygen forbidden emission lines. Our calculated limb intensity for [OI] 6300 {AA} emission, when the Mars is at near perihelion and for solar maximum condition, suggests that all these forbidden emissions should be observable in the NOMAD-TGO visible spectra taken on the dayside of Martian upper atmosphere. More simultaneous observations of forbidden atomic oxygen emission lines will help to understand the photochemical processes of oxygen-bearing species in the dayside Martian upper atmosphere.
We present dayside thermal emission observations of the hottest exoplanet KELT-9b using the new MAROON-X spectrograph. We detect atomic lines in emission at 10$sigma$ confidence using cross correlation with binary masks. The detection of emission lin es confirms the presence of a thermal inversion in KELT-9bs atmosphere. We also search for TiO and other molecules, which have been invoked to explain the unusual textit{HST}/WFC3 spectrum of the planet. We do not detect any molecules, and instead use a retrieval approach to place an upper limit on the TiO volume mixing ratio of 10$^{-8.5}$ (at 99% confidence). This upper limit is inconsistent with the models used to match the WFC3 data, which require at least an order of magnitude more TiO, thus suggesting the need for an alternate explanation of the space-based data. Our retrieval results also strongly prefer an inverted temperature profile and atomic/ion abundances largely consistent with the expectations for a solar composition gas in thermochemical equilibrium. The exception is the retrieved abundance of Fe$^+$, which is about 1-2 orders of magnitude greater than predictions. These results highlight the growing power of high-resolution spectrographs on large ground-based telescopes to characterize exoplanet atmospheres when used in combination with new retrieval techniques.
155 - L. Pino , J.M. Desert , M. Brogi 2020
We present the first detection of atomic emission lines from the atmosphere of an exoplanet. We detect neutral iron lines from the day-side of KELT-9b (Teq $sim$ 4, 000 K). We combined thousands of spectrally resolved lines observed during one night with the HARPS-N spectrograph (R $sim$ 115, 000), mounted at the Telescopio Nazionale Galileo. We introduce a novel statistical approach to extract the planetary parameters from the binary mask cross-correlation analysis. We also adapt the concept of contribution function to the context of high spectral resolution observations, to identify the location in the planetary atmosphere where the detected emission originates. The average planetary line profile intersected by a stellar G2 binary mask was found in emission with a contrast of 84 $pm$ 14 ppm relative to the planetary plus stellar continuum (40 $pm$ 5$%$ relative to the planetary continuum only). This result unambiguously indicates the presence of an atmospheric thermal inversion. Finally, assuming a modelled temperature profile previously published (Lothringer et al. 2018), we show that an iron abundance consistent with a few times the stellar value explains the data well. In this scenario, the iron emission originates at the $10^{-3}$-$10^{-5}$ bar level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا