ﻻ يوجد ملخص باللغة العربية
The chromospheric Lyman-alpha line of neutral hydrogen (lya; 1216AA) is the strongest emission line in the solar spectrum. Fluctuations in lya are known to drive changes in planetary atmospheres, although few instruments have had the ability to capture rapid lya enhancements during solar flares. In this paper we describe flare-associated emissions via a statistical study of 477 M- and X-class flares as observed by the EUV Sensor on board the 15th Geostationary Operational Environmental Satellite, which has been monitoring the full-disk solar lya irradiance on 10~s timescales over the course of Solar Cycle 24. The vast majority (95%) of these flares produced lya enhancements of 10% or less above background levels, with a maximum increase of $sim$30%. The irradiance in lya was found to exceed that of the 1-8 AA X-ray irradiance by as much as two orders of magnitude in some cases, although flares that occurred closer to the solar limb were found to exhibit less of a lya enhancement. This center-to-limb variation was verified through a joint, stereoscopic observation of an X-class flare that appeared near the limb as viewed from Earth, but close to disk center as viewed by the MAVEN spacecraft in orbit around Mars. The frequency distribution of peak lya was found to have a power-law slope of $2.8pm0.27$. We also show that increased lya flux is closely correlated with induced currents in the ionospheric E-layer through the detection of the solar flare effect as observed by the Kakioka magnetometer.
Recent studies of interstellar neutral (ISN) hydrogen observed by the Interstellar Boundary Explorer (IBEX) suggested that the present understanding of the radiation pressure acting on hydrogen atoms in the heliosphere should be revised. There is a s
We investigated the quasi-periodic pulsation (QPP) in Lyman-alpha, X-ray and extreme-ultraviolet (EUV) emissions during two solar flares, i.e., an X-class (SOL2012-01-27T) and a C-class (SOL2016-02-08T). The full-disk Lyman-alpha and X-Ray flux durin
We investigate the characteristics and the sources of the slow (< 450 km/s) solar wind during the four years (2006-2009) of low solar activity between Solar Cycles 23 and 24. We use a comprehensive set of in-situ observations in the near-Earth solar
The paper presents results of a search for helioseismic events (sunquakes) produced by M-X class solar flares during Solar Cycle 24. The search is performed by analyzing photospheric Dopplergrams from Helioseismic Magnetic Imager (HMI). Among the tot
As an observational case study, we consider the origin of a prominent poleward surge of leading polarity, visible in the magnetic butterfly diagram during Solar Cycle 24. A new technique is developed for assimilating individual regions of strong magn