ﻻ يوجد ملخص باللغة العربية
The paper presents results of a search for helioseismic events (sunquakes) produced by M-X class solar flares during Solar Cycle 24. The search is performed by analyzing photospheric Dopplergrams from Helioseismic Magnetic Imager (HMI). Among the total number of 500 M-X class flares, 94 helioseismic events were detected. Our analysis has shown that many strong sunquakes were produced by solar flares of low M class (M1-M5), while in some powerful X-class flares helioseismic waves were not observed or were weak. Our study also revealed that only several active regions were characterized by the most efficient generation of helioseismic waves during flares. We found that the sunquake power correlates with the maximum value of the soft X-ray flux time derivative better than with the X-ray class, indicating that the sunquake mechanism is associated with high-energy particles. We also show that the seismically active flares are more impulsive than the flares without helioseismic perturbations. We present a new catalog of helioseismic solar flares, which opens opportunities for performing statistical studies to better understand the physics of sunquakes as well as the flare energy release and transport.
We propose a novel approach to reconstruct the surface magnetic helicity density on the Sun or sun-like stars. The magnetic vector potential is determined via decomposition of vector magnetic field measurements into toroidal and poloidal components.
The extended solar cycle 24 began in 1999 near 70 degrees latitude, similarly to cycle 23 in 1989 and cycle 22 in 1979. The extended cycle is manifested by persistent Fe XIV coronal emission appearing near 70 degrees latitude and slowly migrating tow
This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. The Sun Earth is an integrated physical system in which the space environment of the Earth s
As an observational case study, we consider the origin of a prominent poleward surge of leading polarity, visible in the magnetic butterfly diagram during Solar Cycle 24. A new technique is developed for assimilating individual regions of strong magn
We investigate the characteristics and the sources of the slow (< 450 km/s) solar wind during the four years (2006-2009) of low solar activity between Solar Cycles 23 and 24. We use a comprehensive set of in-situ observations in the near-Earth solar