ﻻ يوجد ملخص باللغة العربية
The global climate crisis poses new risks to humanity, and with them, new challenges to the practices of professional astronomy. Avoiding the more catastrophic consequences of global warming by more than 1.5 degrees requires an immediate reduction of greenhouse gas emissions. According to the 2018 United Nations Intergovernmental Panel report, this will necessitate a 45% reduction of emissions by 2030 and net-zero emissions by 2050. Efforts are required at all levels, from the individual to the governmental, and every discipline must find ways to achieve these goals. This will be especially difficult for astronomy with its significant reliance on conference and research travel, among other impacts. However, our long-range planning exercises provide the means to coordinate our response on a variety of levels. We have the opportunity to lead by example, rising to the challenge rather than reacting to external constraints. We explore how astronomy can meet the challenge of a changing climate in clear and responsible ways, such as how we set expectations (for ourselves, our institutions, and our granting agencies) around scientific travel, the organization of conferences, and the design of our infrastructure. We also emphasize our role as reliable communicators of scientific information on a problem that is both human and planetary in scale.
For astronomers to make a significant contribution to the reduction of climate change-inducing greenhouse gas emissions, we first must quantify our sources of emissions and review the most effective approaches for reducing them. Here we estimate that
For the first time in history, humans have reached the point where it is possible to construct a revolutionary space-based observatory that has the capability to find dozens of Earth-like worlds, and possibly some with signs of life. This same telesc
Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for
An updated Science Vision for the SOFIA project is presented, including an overview of the characteristics and capabilities of the observatory and first generation instruments. A primary focus is placed on four science themes: The Formation of Stars
This white paper describes the science case for Very Long Baseline Interferometry (VLBI) and provides suggestions towards upgrade paths for the European VLBI Network (EVN). The EVN is a distributed long-baseline radio interferometric array, that oper