ترغب بنشر مسار تعليمي؟ اضغط هنا

Modernizing Titan2D, a Parallel AMR Geophysical Flow Code to Support Multiple Rheologies and Extendability

71   0   0.0 ( 0 )
 نشر من قبل Nikolay A. Simakov
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we report on strategies and results of our initial approach for modernization of Titan2D code. Titan2D is a geophysical mass flow simulation code designed for modeling of volcanic flows, debris avalanches and landslides over a realistic terrain model. It solves an underlying hyperbolic system of partial differential equations using parallel adaptive mesh Godunov scheme. The following work was done during code refactoring and modernization. To facilitate user input two level python interface was developed. Such design permits large changes in C++ and Python low-level while maintaining stable high-level interface exposed to the end user. Multiple diverged forks implementing different material models were merged back together. Data storage layout was changed from a linked list of structures to a structure of arrays representation for better memory access and in preparation for further work on better utilization of vectorized instruction. Existing MPI parallelization was augmented with OpenMP parallelization. The performance of a hash table used to store mesh elements and nodes references was improved by switching from a linked list for overflow entries to dynamic arrays allowing the implementation of the binary search algorithm. The introduction of the new data layout made possible to reduce the number of hash table look-ups by replacing them with direct use of indexes from the storage class. The modifications lead to 8-9 times performance improvement for serial execution.

قيم البحث

اقرأ أيضاً

362 - Z. Yin , Li Yuan , Tao Tang 2004
A novel parallel technique for Fourier-Galerkin pseudo-spectral methods with applications to two-dimensional Navier-Stokes equations and inviscid Boussinesq approximation equations is presented. It takes the advantage of the programming structure of the phase-shift de-aliased scheme for pseudo-spectral codes, and combines the task-distribution strategy [Yin, Clercx and Montgomery, Comput. Fluids, 33, 509 (2004)] and parallelized Fast Fourier Transform scheme. The performances of the resulting MPI Fortran90 codes with the new procedure on SGI 3800 are reported. For fixed resolution of the same problem, the peak speed of the new scheme can be twice as fast as the old parallel methods. The parallelized codes are used to solve some challenging numerical problems governed by the Navier-Stokes equations and the Boussinesq equations. Two interesting physical problems, namely, the double-valued $omega$-$psi $ structure in two-dimensional decaying turbulence and the collapse of the bubble cap in the Boussinesq simulation, are solved by using the proposed parallel algorithms.
We introduce PVSC-DTM (Parallel Vectorized Stencil Code for Dirac and Topological Materials), a library and code generator based on a domain-specific language tailored to implement the specific stencil-like algorithms that can describe Dirac and topo logical materials such as graphene and topological insulators in a matrix-free way. The generated hybrid-parallel (MPI+OpenMP) code is fully vectorized using Single Instruction Multiple Data (SIMD) extensions. It is significantly faster than matrix-based approaches on the node level and performs in accordance with the roofline model. We demonstrate the chip-level performance and distributed-memory scalability of basic building blocks such as sparse matrix-(multiple-) vector multiplication on modern multicore CPUs. As an application example, we use the PVSC-DTM scheme to (i) explore the scattering of a Dirac wave on an array of gate-defined quantum dots, to (ii) calculate a bunch of interior eigenvalues for strong topological insulators, and to (iii) discuss the photoemission spectra of a disordered Weyl semimetal.
Convection is an important physical process in astrophysics well-studied using numerical simulations under the Boussinesq and/or anelastic approximations. However these approaches reach their limits when compressible effects are important in the high Mach flow regime, e.g. in stellar atmospheres or in the presence of accretion shocks. In order to tackle these issues, we propose a new high performance and portable code, called ARK with a numerical solver well-suited for the stratified compressible Navier-Stokes equations. We take a finite volume approach with machine precision conservation of mass, transverse momentum and total energy. Based on previous works in applied mathematics we propose the use of a low Mach correction to achieve a good precision in both low and high Mach regimes. The gravity source term is discretized using a well-balanced scheme in order to reach machine precision hydrostatic balance. This new solver is implemented using the Kokkos library in order to achieve high performance computing and portability across different architectures (e.g. multi-core, many-core, and GP-GPU). We show that the low-Mach correction allows to reach the low-Mach regime with a much better accuracy than a standard Godunov-type approach. The combined well-balanced property and the low-Mach correction allowed us to trigger Rayleigh-Benard convective modes close to the critical Rayleigh number. Furthermore we present 3D turbulent Rayleigh-Benard convection with low diffusion using the low-Mach correction leading to a higher kinetic energy power spectrum. These results are very promising for future studies of high Mach and highly stratified convective problems in astrophysics.
Orbital geophysical investigations of Enceladus are critical to understanding its energy balance. We identified key science questions for the geophysical exploration of Enceladus, answering which would support future assessment of Enceladus astrobiol ogical potential. Using a Bayesian framework, we explored how science requirements map to measurement requirements. We performed mission simulations to study the sensitivity of a single spacecraft and dual spacecraft configurations to static gravity and tidal Love numbers of Enceladus. We find that mapping Enceladus gravity field, improving the accuracy of the physical libration amplitude, and measuring Enceladus tidal response would provide critical constraints on the internal structure, and establish a framework for assessing Enceladus long-term habitability. This kind of investigation could be carried out as part of a life search mission at little additional resource requirements.
Subsurface applications including geothermal, geological carbon sequestration, oil and gas, etc., typically involve maximizing either the extraction of energy or the storage of fluids. Characterizing the subsurface is extremely complex due to heterog eneity and anisotropy. Due to this complexity, there are uncertainties in the subsurface parameters, which need to be estimated from multiple diverse as well as fragmented data streams. In this paper, we present a non-intrusive sequential inversion framework, for integrating data from geophysical and flow sources to constraint subsurface Discrete Fracture Networks (DFN). In this approach, we first estimate bounds on the statistics for the DFN fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained based on the flow data. The efficacy of this multi-physics based sequential inversion is demonstrated through a representative synthetic example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا