ترغب بنشر مسار تعليمي؟ اضغط هنا

Life on Millers Planet: The Habitable Zone Around Supermassive Black Holes

150   0   0.0 ( 0 )
 نشر من قبل Jeremy D. Schnittman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the science fiction film $Interstellar$, a band of intrepid astronauts sets out to explore a system of planets orbiting a supermassive black hole, searching for a world that may be conducive to hosting human life. While the film legitimately boasts a relatively high level of scientific accuracy, it is still restricted by Hollywood sensitivities and limitations. In this paper, we discuss a number of additional astrophysical effects that may be important in determining the (un)inhabitable environment of a planet orbiting close to a giant, accreting black hole. Foremost among these effects is the blueshift and beaming of incident radiation on the planet, due to the time dilation of an observer orbiting very close to the black hole. This results in high-energy flux incoming from surrounding stars and background radiation, with significant implications for habitability.

قيم البحث

اقرأ أيضاً

Kapteyns star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of thes e candidate planets--Kapteyn b (P = 48 days)--resides within the circumstellar habitable zone. Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyns star is photometrically very stable, a suite of spectral activity indices reveals a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of planet b, and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the Habitable Zone, but an artifact of stellar activity.
108 - Manuel Arca Sedda 2020
In this paper, we explore the mechanisms that regulate the formation and evolution of stellar black hole binaries (BHBs) around supermassive black holes (SMBHs). We show that dynamical interactions can efficiently drive in-situ BHB formation if the S MBH is surrounded by a massive nuclear cluster (NC), while orbitally segregated star clusters can replenish the BHB reservoir in SMBH-dominated nuclei. We discuss how the combined action of stellar hardening and mass segregation sculpts the BHB orbital properties. We use direct N-body simulations including post-Newtonian corrections up to 2.5 order to study the BHB-SMBH interplay, showing that the Kozai-Lidov mechanism plays a crucial role in shortening binaries lifetime. We find that the merging probability weakly depends on the SMBH mass in the $10^6-10^9{rm ~M}_odot$ mass range, leading to a merger rate $Gamma simeq 3-8$ yr$^{-1}$ Gpc$^{-3}$ at redshift zero. Nearly $40%$ of the mergers have masses in the BH mass gap, $50-140{rm ~M}_odot$, thus indicating that galactic nuclei are ideal places to form BHs in this mass range. We argue that gravitational wave (GW) sources with components mass $m_1>40{rm ~M}_odot$ and $m_2<30{rm ~M}_odot$ would represent a strong indicator of a galactic nuclei origin. The majority of these mergers could be multiband GW sources in the local Universe: nearly $40%$ might be seen by LISA as eccentric sources and, a few years later, as circular sources by LIGO and the Einstein Telescope, making decihertz observatories like DECIGO unique instruments to bridge the observations during the binary inspiral.
We analyzed the thermodynamics of hypothetical exoplanets at very low Keplerian circular orbits in close vicinity of rapidly spinning supermassive black holes. Such black hole exoplanets are heated by strongly blueshifted and focused flux of the inco ming cosmic microwave background (CMB) and cooled by the cold part of the local sky containing the black hole shadow. This gives rise to a temperature difference, which can drive processes far from thermodynamic equilibrium in a hypothetical life form inhabiting black hole exoplanets, similar to the case of a planet heated by the radiation of the parent star and cooled by the night sky. We found that for a narrow range of radii of very low Keplerian circular orbits and for very high spin of a supermassive black hole, the temperature regime of the black hole exoplanets corresponds to the habitable zone around standard stars. The thermodynamics of black hole exoplanets therefore, in principle, does not exclude the existence of life based on known biology. The peak of the multiblackbody spectral profile of the CMB heating the exoplanet is located in the ultraviolet band, but a significant fraction of the flux comes also in the visible and infrared bands. The minimum mass of a black hole ensuring the resistance to tidal disruption of an Earth-like exoplanet orbiting in the habitable zone is estimated to $1.63 cdot 10^8 , m_{odot}$.
The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a pro mising location for the formation of these sBHBs, as well as binaries of other compact objects, because of powerful torques exerted by the gas disk. These gas torques cause orbiting compact objects to migrate towards regions in the disk where inward and outward torques cancel, known as migration traps. We simulate the migration of stellar mass black holes in an example of a model AGN disk, using an augmented N-body code that includes analytic approximations to migration torques, stochastic gravitational forces exerted by turbulent density fluctuations in the disk, and inclination and eccentricity dampening produced by passages through the gas disk, in addition to the standard gravitational forces between objects. We find that sBHBs form rapidly in our model disk as stellar-mass black holes migrate towards the migration trap. These sBHBs are likely to subsequently merge on short time-scales. The process continues, leading to the build-up of a population of over-massive stellar-mass black holes. The formation of sBHBs in AGN disks could contribute significantly to the sBHB merger rate inferred by LIGO.
111 - Douglas Scott , Ali Frolop 2020
Exploring the Universe is one of the great unifying themes of humanity. Part of this endeavour is the search for extraterrestrial life. But how likely is it that we will find life, or that if we do it will be similar to ourselves? And therefore how d o we know where and how to look? We give examples of the sort of reasoning that has been used to narrow and focus this search and we argue that obvious extensions to that logical framework will result in greater success.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا