ﻻ يوجد ملخص باللغة العربية
During the slow neutron capture process in massive stars, reactions on light elements can both produce and absorb neutrons thereby influencing the final heavy element abundances. At low metallicities, the high neutron capture rate of 16-O can inhibit s-process nucleosynthesis unless the neutrons are recycled via the 17O(a,n)20Ne reaction. The efficiency of this neutron recycling is determined by competition between the 17O(a,n)20Ne and 17O(a,g)21Ne reactions. While some experimental data are available on the former reaction, no data exist for the radiative capture channel at the relevant astrophysical energies. The 17O(a,g)21Ne reaction has been studied directly using the DRAGON recoil separator at the TRIUMF Laboratory. The reaction cross section has been determined at energies between 0.6 and 1.6 MeV Ecm, reaching into the Gamow window for core helium burning for the first time. Resonance strengths for resonances at 0.63, 0.721, 0.81 and 1.122 MeV Ecm have been extracted. The experimentally based reaction rate calculated represents a lower limit, but suggests that significant s-process nucleosynthesis occurs in low metallicity massive stars.
The $^{17}$O(p,$alpha$)$^{14}$N reaction plays a key role in various astrophysical scenarios, from asymptotic giant branch stars to classical novae. It affects the synthesis of rare isotopes such as $^{17}$O and $^{18}$F, which can provide constraint
The recent experimental evaluation of the 18F(a,p)21Ne reaction rate, when considering its associated uncertainties, presented significant differences compared to the theoretical Hauser-Feshbach rate. This was most apparent at the low temperatures re
The 17O(p,g)18F reaction plays an important role in hydrogen burning processes in different stages of stellar evolution. The rate of this reaction must therefore be known with high accuracy in order to provide the necessary input for astrophysical mo
Cross section measurements of the $^{58}$Ni($alpha$,$gamma$)$^{62}$Zn reaction were performed in the energy range $E_{alpha}=5.5-9.5$ MeV at the Nuclear Science Laboratory of the University of Notre Dame, using the NSCL Summing NaI(Tl) detector and t
The creation of carbon and oxygen in our universe is one of the forefront questions in nuclear astrophysics. The determination of the abundance of these elements is key to both our understanding of the formation of life on earth and to the life cycle