ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the $^{58}$Ni($alpha$,$gamma$)$^{62}$Zn reaction and its astrophysical impact

128   0   0.0 ( 0 )
 نشر من قبل Stephen Quinn
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross section measurements of the $^{58}$Ni($alpha$,$gamma$)$^{62}$Zn reaction were performed in the energy range $E_{alpha}=5.5-9.5$ MeV at the Nuclear Science Laboratory of the University of Notre Dame, using the NSCL Summing NaI(Tl) detector and the $gamma$-summing technique. The measurements are compared to predictions in the statistical Hauser-Feshbach model of nuclear reactions using the SMARAGD code. It is found that the energy dependence of the cross section is reproduced well but the absolute value is overestimated by the prediction. This can be remedied by rescaling the $alpha$ width by a factor of 0.45. Stellar reactivities were calculated with the rescaled $alpha$ width and their impact on nucleosynthesis in type Ia supernovae has been studied. It is found that the resulting abundances change by up to 5% when using the new reactivities.



قيم البحث

اقرأ أيضاً

The synthesis of heavy, proton rich isotopes in the astrophysical gamma-process proceeds through photodisintegration reactions. For the improved understanding of the process, the rates of the involved nuclear reactions must be known. The reaction 128 Ba(g,a)124Xe was found to affect the abundance of the p nucleus 124Xe. Since the stellar rate for this reaction cannot be determined by a measurement directly, the aim of the present work was to measure the cross section of the inverse 124Xe(a,g)128Ba reaction and to compare the results with statistical model predictions. Of great importance is the fact that data below the (a,n) threshold was obtained. Studying simultaneously the 124Xe(a,n)127Ba reaction channel at higher energy allowed to further identify the source of a discrepancy between data and prediction. The 124Xe + alpha cross sections were measured with the activation method using a thin window 124Xe gas cell. The studied energy range was between E = 11 and 15 MeV close above the astrophysically relevant energy range. The obtained cross sections are compared with statistical model calculations. The experimental cross sections are smaller than standard predictions previously used in astrophysical calculations. As dominating source of the difference, the theoretical alpha width was identified. The experimental data suggest an alpha width lower by at least a factor of 0.125 in the astrophysical energy range. An upper limit for the 128Ba(g,a)124Xe stellar rate was inferred from our measurement. The impact of this rate was studied in two different models for core-collapse supernova explosions of 25 solar mass stars. A significant contribution to the 124Xe abundance via this reaction path would only be possible when the rate was increased above the previous standard value. Since the experimental data rule this out, they also demonstrate the closure of this production path.
The cross section of the $^{62}$Ni($n,gamma$) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200~keV neutron energy and Maxwellian ave raged cross sections (MACS) from $kT=5-100$ keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at $kT=30$ keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the $^{63}$Ni($n,gamma$) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on $s$-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.
127 - A. Best , M. Beard , J. Gorres 2013
The ratio between the rates of the reactions O-17(alpha,n)Ne-20 and O-17(alpha,gamma)Ne-21 determines whether O-16 is an efficient neutron poison for the s process in massive stars, or if most of the neutrons captured by O-16(n,gamma) are recycled in to the stellar environment. This ratio is of particular relevance to constrain the s process yields of fast rotating massive stars at low metallicity. Recent results on the (alpha,gamma) channel have made it necessary to measure the (alpha,n) reaction more precisely and investigate the effect of the new data on s process nucleosynthesis in massive stars. We present a new measurement of the O-17(alpha, n) reaction using a moderating neutron detector. In addition, the (alpha, n_1) channel has been measured independently by observation of the characteristic 1633 keV gamma-transition in Ne-20. The reaction cross section was determined with a simultaneous R-matrix fit to both channels. (alpha,n) and (alpha, gamma) resonance strengths of states lying below the covered energy range were estimated using their known properties from the literature. A new O-17(alpha,n) reaction rate was deduced for the temperature range 0.1 GK to 10 GK. It was found that in He burning conditions the (alpha,gamma) channel is strong enough to compete with the neutron channel. This leads to a less efficient neutron recycling compared to a previous suggestion of a very weak (alpha,gamma) channel. S process calculations using our rates confirm that massive rotating stars do play a significant role in the production of elements up to Sr, but they strongly reduce the s process contribution to heavier elements.
The $E0$ transition strength in the $2^+_2 rightarrow 2^+_1$ transitions of $^{58,60,62}$Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). Th e CAESAR Compton-suppressed HPGe array and the Super-e solenoid at ANU were used to measure the $delta(E2/M1)$ mixing ratio and internal conversion coefficient of each transition following inelastic proton scattering. Level half-lives, $delta(E2/M1)$ mixing ratios and $gamma$-ray branching ratios were measured at UK following inelastic neutron scattering. The new spectroscopic information was used to determine the $E0$ strengths. These are the first $2^+ rightarrow 2^+$ $E0$ transition strengths measured in nuclei with spherical ground states and the $E0$ component is found to be unexpectedly large; in fact, these are amongst the largest $E0$ transition strengths in medium and heavy nuclei reported to date.
132 - G. G. Kiss , T. Szucs , T.Rauscher 2014
The cross sections of the 162Er(a,g,)166Yb and 162Er(a,n)165Yb reactions have been measured for the first time. The radiative alpha capture reaction cross section was measured from Ec.m. = 16.09 down to Ec.m. = 11.21 MeV, close to the astrophysically relevant region (which lies between 7.8 and 11.48 MeV at 3 GK stellar temperature). The 162Er(a,n)165Yb reaction was studied above the reaction threshold between Ec.m. = 12.19 and 16.09 MeV. The fact that the 162Er(a,g)166Yb cross sections were measured below the (a,n) threshold at first time in this mass region opens the opportunity to study directly the a-widths required for the determination of astrophysical reaction rates. The data clearly show that compound nucleus formation in this reaction proceeds differently than previously predicted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا